Full metadata record

DC Field Value Language
dc.contributor.authorDaehwan, Ahn-
dc.contributor.authorHU, SU MAN-
dc.contributor.authorKo, Kyul-
dc.contributor.authorPark, Dong Hee-
dc.contributor.authorSuh, Ho young-
dc.contributor.authorKim, Gyu-Tae-
dc.contributor.authorHan, Jae Hoon-
dc.contributor.authorSONG, JIN DONG-
dc.contributor.authorJeong, Yeon Joo-
dc.date.accessioned2024-01-12T03:02:12Z-
dc.date.available2024-01-12T03:02:12Z-
dc.date.created2022-07-06-
dc.date.issued2022-06-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76698-
dc.description.abstractA charge trap device based on field-effect transistors (FET) is a promising candidate for artificial synapses because of its high reliability and mature fabrication technology. However, conventional MOSFET-based charge trap synapses require a strong stimulus for synaptic update because of their inefficient hot-carrier injection into the charge trapping layer, consequently causing a slow speed operation and large power consumption. Here, we propose a highly efficient charge trap synapse using III-V materials-based tunnel field-effect transistor (TFET). Our synaptic TFETs present superior subthreshold swing and improved charge trapping ability utilizing both carriers as charge trapping sources: hot holes created by impact ionization in the narrow bandgap InGaAs after being provided from the p(+)-source, and band-to-band tunneling hot electrons (BBHEs) generated at the abrupt p(+)n junctions in the TFETs. Thanks to these advances, our devices achieved outstanding efficiency in synaptic characteristics with a 5750 times faster synaptic update speed and 51 times lower sub-tJ/mu m(2) energy consumption per single synaptic update in comparison to the MOSFET-based synapse. An artificial neural network ANN) simulation also confirmed a high recognition accuracy of handwritten digits up to similar to 90% in a multilayer perceptron neural network based on our synaptic devices.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleEnergy-Efficient III-V Tunnel FET-Based Synaptic Device with Enhanced Charge Trapping Ability Utilizing Both Hot Hole and Hot Electron Injections for Analog Neuromorphic Computing-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.2c04404-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.14, no.21, pp.24592 - 24601-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume14-
dc.citation.number21-
dc.citation.startPage24592-
dc.citation.endPage24601-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000820896500001-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusHARDWARE IMPLEMENTATION-
dc.subject.keywordPlusDEEP-
dc.subject.keywordPlusINTELLIGENCE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTRANSISTORS-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordAuthorcharge trap synapse-
dc.subject.keywordAuthorneuromorphic-
dc.subject.keywordAuthorInGaAs-
dc.subject.keywordAuthortunneling field-effect transistors-
dc.subject.keywordAuthorhot carrier-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE