Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Daehwan, Ahn | - |
dc.contributor.author | HU, SU MAN | - |
dc.contributor.author | Ko, Kyul | - |
dc.contributor.author | Park, Dong Hee | - |
dc.contributor.author | Suh, Ho young | - |
dc.contributor.author | Kim, Gyu-Tae | - |
dc.contributor.author | Han, Jae Hoon | - |
dc.contributor.author | SONG, JIN DONG | - |
dc.contributor.author | Jeong, Yeon Joo | - |
dc.date.accessioned | 2024-01-12T03:02:12Z | - |
dc.date.available | 2024-01-12T03:02:12Z | - |
dc.date.created | 2022-07-06 | - |
dc.date.issued | 2022-06 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/76698 | - |
dc.description.abstract | A charge trap device based on field-effect transistors (FET) is a promising candidate for artificial synapses because of its high reliability and mature fabrication technology. However, conventional MOSFET-based charge trap synapses require a strong stimulus for synaptic update because of their inefficient hot-carrier injection into the charge trapping layer, consequently causing a slow speed operation and large power consumption. Here, we propose a highly efficient charge trap synapse using III-V materials-based tunnel field-effect transistor (TFET). Our synaptic TFETs present superior subthreshold swing and improved charge trapping ability utilizing both carriers as charge trapping sources: hot holes created by impact ionization in the narrow bandgap InGaAs after being provided from the p(+)-source, and band-to-band tunneling hot electrons (BBHEs) generated at the abrupt p(+)n junctions in the TFETs. Thanks to these advances, our devices achieved outstanding efficiency in synaptic characteristics with a 5750 times faster synaptic update speed and 51 times lower sub-tJ/mu m(2) energy consumption per single synaptic update in comparison to the MOSFET-based synapse. An artificial neural network ANN) simulation also confirmed a high recognition accuracy of handwritten digits up to similar to 90% in a multilayer perceptron neural network based on our synaptic devices. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.title | Energy-Efficient III-V Tunnel FET-Based Synaptic Device with Enhanced Charge Trapping Ability Utilizing Both Hot Hole and Hot Electron Injections for Analog Neuromorphic Computing | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsami.2c04404 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Applied Materials & Interfaces, v.14, no.21, pp.24592 - 24601 | - |
dc.citation.title | ACS Applied Materials & Interfaces | - |
dc.citation.volume | 14 | - |
dc.citation.number | 21 | - |
dc.citation.startPage | 24592 | - |
dc.citation.endPage | 24601 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000820896500001 | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | HARDWARE IMPLEMENTATION | - |
dc.subject.keywordPlus | DEEP | - |
dc.subject.keywordPlus | INTELLIGENCE | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | TRANSISTORS | - |
dc.subject.keywordPlus | DIFFUSION | - |
dc.subject.keywordPlus | MEMORY | - |
dc.subject.keywordPlus | MECHANISMS | - |
dc.subject.keywordAuthor | charge trap synapse | - |
dc.subject.keywordAuthor | neuromorphic | - |
dc.subject.keywordAuthor | InGaAs | - |
dc.subject.keywordAuthor | tunneling field-effect transistors | - |
dc.subject.keywordAuthor | hot carrier | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.