Full metadata record

DC Field Value Language
dc.contributor.authorChanyeol Choi-
dc.contributor.authorHyunseok Kim-
dc.contributor.authorJi-Hoon Kang-
dc.contributor.authorMin-Kyu Song-
dc.contributor.authorHanwool Yeon-
dc.contributor.authorClelsta S. Chang-
dc.contributor.authorJun Min Suh-
dc.contributor.authorKuangye Lu-
dc.contributor.authorBo-In Park-
dc.contributor.authorYeongin Kim-
dc.contributor.authorHan Eol Lee-
dc.contributor.authorDoyoon Lee-
dc.contributor.authorJaeyong Lee-
dc.contributor.authorIkbeom Jang-
dc.contributor.authorSubeen Pang-
dc.contributor.authorKanghyun Ryu-
dc.contributor.authorSang-Hoon Bae-
dc.contributor.authorYifan Nie-
dc.contributor.authorHyun S. Kum-
dc.contributor.authorPark, Min Chul-
dc.contributor.author이수연-
dc.contributor.authorKim, Hyung jun-
dc.contributor.authorHuaqiang Wu-
dc.contributor.authorPen Lin-
dc.contributor.authorJeehwan Kim-
dc.date.accessioned2024-01-12T03:30:14Z-
dc.date.available2024-01-12T03:30:14Z-
dc.date.created2022-06-17-
dc.date.issued2022-06-
dc.identifier.issn2520-1131-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76703-
dc.description.abstractArtificial intelligence applications have changed the landscape of computer design, driving a search for hardware architecture that can efficiently process large amounts of data. Three-dimensional heterogeneous integration with advanced packaging technologies could be used to improve data bandwidth among sensors, memory and processors. However, such systems are limited by a lack of hardware reconfigurability and the use of conventional von Neumann architectures. Here we report stackable hetero-integrated chips that use optoelectronic device arrays for chip-to-chip communication and neuromorphic cores based on memristor crossbar arrays for highly parallel data processing. With this approach, we create a system with stackable and replaceable chips that can directly classify information from a light-based image source. We also modify this system by inserting a preprogrammed neuromorphic denoising layer that improves the classification performance in a noisy environment. Our reconfigurable three-dimensional hetero-integrated technology can be used to vertically stack a diverse range of functional layers and could provide energy-efficient sensor computing systems for edge computing applications. By using optoelectronic device arrays for chip-to-chip communication and neuromorphic cores based on memristor crossbar arrays for highly parallel data processing, reconfigurable and stackable hetero-integrated chips can be created for use in edge computing applications.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleReconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence-
dc.typeArticle-
dc.identifier.doi10.1038/s41928-022-00778-y-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Electronics, v.5, no.6, pp.386 - 393-
dc.citation.titleNature Electronics-
dc.citation.volume5-
dc.citation.number6-
dc.citation.startPage386-
dc.citation.endPage393-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000810376500001-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE