Full metadata record

DC Field Value Language
dc.contributor.authorJimin Park-
dc.contributor.authorNAM JUNHO-
dc.contributor.author손장엽-
dc.contributor.author정원준-
dc.contributor.author박민-
dc.contributor.author이동수-
dc.contributor.author전대영-
dc.date.accessioned2024-01-12T03:30:22Z-
dc.date.available2024-01-12T03:30:22Z-
dc.date.created2022-06-15-
dc.date.issued2022-06-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76707-
dc.description.abstractTwo-dimensional transition-metal dichalcogenide (TMD) materials have attracted increasing attention in efforts to overcome fundamental issues faced by the complementary metal-oxide-semiconductor industry. Multilayer TMD materials such as MoS2 can be used for high-performance transistor-based applications; the drive currents are high and the materials handle low-frequency (LF) noise well. We fabricated double-gated multilayer MoS2 transistors using the h-BN dielectric for the top gate and silicon dioxide for the bottom gate. We systemically investigated the bottom gate voltage (V-b)-controlled electrical characteristics and the top/bottom interface-coupling effects. The effective thickness of the MoS2 channel (t(MoS2_)(eff)) was well modulated by V-b, and t(MoS2_)(eff) reduction by negative V-b dramatically improved the I-on/I-off ratio. Numerical simulation and analytical modeling with a variation of the depletion depth under different bias conditions verified the experimental results. We were also the first to observe V-b-tuned LF noise characteristics. Here, we discuss the V-b-affected series resistance and carrier mobility in detail. Our findings greatly enhance the understanding of how double-gated multilayer MoS2 transistors operate and will facilitate performance optimization in the real world.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleElectrostatically Controllable Channel Thickness and Tunable Low-Frequency Noise Characteristics of Double-Gated Multilayer MoS<sub>2</sub> Field-Effect Transistors with h-BN Dielectric-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.2c05294-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.14, no.22, pp.25763 - 25769-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume14-
dc.citation.number22-
dc.citation.startPage25763-
dc.citation.endPage25769-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000809993900001-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusNANOWIRE TRANSISTORS-
dc.subject.keywordPlusEXTRACTION-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordAuthormultilayer MoS2 transistors-
dc.subject.keywordAuthordouble gate-
dc.subject.keywordAuthorcoupling effects-
dc.subject.keywordAuthorelectrostatically controllable channel-thickness-
dc.subject.keywordAuthorI-on/I-off ratio-
dc.subject.keywordAuthorlow-frequency (LF) noise-
dc.subject.keywordAuthorseries resistance and carrier mobility-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE