Full metadata record

DC Field Value Language
dc.contributor.authorLee, Seung hwan-
dc.contributor.authorJung Se Hun-
dc.contributor.authorYang, Sungeun-
dc.contributor.authorLee, Jong-Ho-
dc.contributor.authorShin, Hyunjung-
dc.contributor.authorKim, Joosun-
dc.contributor.authorPark, Sang baek-
dc.date.accessioned2024-01-12T03:30:47Z-
dc.date.available2024-01-12T03:30:47Z-
dc.date.created2022-03-18-
dc.date.issued2022-06-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76721-
dc.description.abstractEmerging solid-state lithium batteries demand a stable solid electrolyte against both Li anodes and high-voltage cathodes. The NASICON-type Li1.5Al0.5Ge1.5(PO4)3 (LAGP) solid electrolyte is highly tolerant to high-voltage operation and air environments, but it suffers from poor interfacial compatibility with Li anodes. Herein, we revisit the Li/LiPON bilayer thin-film in mature and ultrastable thin-film batteries as a bifunctional interlayer that can resolve both chemical and mechanical interfacial problems between Li anodes and LAGP. Interestingly, defect-free contact of the Li thin film onto LiPON/LAGP dramatically reduces the anode interface impedance between LAGP and Li foil, which eliminates the step for Li foil heating. As a result, it delivers a high capacity and rate capability with a long cycle in all-solid-state Li-O2 batteries. Moreover, by virtue of a systematic thin-film configuration, a model study with different interlayer combinations as well as LiPON thicknesses clearly distinguishes two degradation mechanisms in LAGP-based cells: chemical reduction of Ge at the anode interface and mechanical contact loss by nonuniform Li stripping/plating upon cycling. Thanks to its exceptional electrochemical stability window, this Li/LiPON-modified LAGP will help to achieve the commercialization of safe and long-lasting solid-state lithium batteries. ? 2022 Elsevier B.V.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleRevisiting the LiPON/Li thin film as a bifunctional interlayer for NASICON solid electrolyte-based lithium metal batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2022.152790-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.586, pp.152790-
dc.citation.titleApplied Surface Science-
dc.citation.volume586-
dc.citation.startPage152790-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000776117300001-
dc.identifier.scopusid2-s2.0-85124697142-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusORIGIN-
dc.subject.keywordAuthorAll-solid-state batteries-
dc.subject.keywordAuthorBifunctional thin film interlayer-
dc.subject.keywordAuthorLiPON-
dc.subject.keywordAuthorOxide solid electrolyte-
dc.subject.keywordAuthorSolid interface-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE