Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ko, Young Jin | - |
dc.contributor.author | Kim, Jun Yong | - |
dc.contributor.author | Lee, Woong Hee | - |
dc.contributor.author | Kim M.G. | - |
dc.contributor.author | Seong T.-Y. | - |
dc.contributor.author | 박종길 | - |
dc.contributor.author | 정연주 | - |
dc.contributor.author | Min, Byoung Koun | - |
dc.contributor.author | Lee, Wook Seong | - |
dc.contributor.author | Lee, Dong Ki | - |
dc.contributor.author | Oh, Hyung Suk | - |
dc.date.accessioned | 2024-01-12T03:31:37Z | - |
dc.date.available | 2024-01-12T03:31:37Z | - |
dc.date.created | 2022-05-04 | - |
dc.date.issued | 2022-04 | - |
dc.identifier.issn | 2041-1723 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/76751 | - |
dc.description.abstract | Though stannic oxides can catalyze CO2 electroreduction to formate, the stability of these catalysts has been limited. Here, the authors demonstrate stable fluorine-doped SnO2 materials toward formate production at current densities of >300 mA/cm(2). The electrosynthesis of formate from CO2 can mitigate environmental issues while providing an economically valuable product. Although stannic oxide is a good catalytic material for formate production, a metallic phase is formed under high reduction overpotentials, reducing its activity. Here, using a fluorine-doped tin oxide catalyst, a high Faradaic efficiency for formate (95% at 100 mA cm(-2)) and a maximum partial current density of 330 mA cm(-2) (at 400 mA cm(-2)) is achieved for the electroreduction of CO2. Furthermore, the formate selectivity (approximate to 90%) is nearly constant over 7 days of operation at a current density of 100 mA cm(-2). In-situ/operando spectroscopies reveal that the fluorine dopant plays a critical role in maintaining the high oxidation state of Sn, leading to enhanced durability at high current densities. First-principle calculation also suggests that the fluorine-doped tin oxide surface could provide a thermodynamically stable environment to form HCOO* intermediate than tin oxide surface. These findings suggest a simple and efficient approach for designing active and durable electrocatalysts for the electrosynthesis of formate from CO2. | - |
dc.language | English | - |
dc.publisher | Nature Publishing Group | - |
dc.title | Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate | - |
dc.type | Article | - |
dc.identifier.doi | 10.1038/s41467-022-29783-7 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Nature Communications, v.13, no.1 | - |
dc.citation.title | Nature Communications | - |
dc.citation.volume | 13 | - |
dc.citation.number | 1 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000785774400002 | - |
dc.identifier.scopusid | 2-s2.0-85128718627 | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | GAS-DIFFUSION ELECTRODE | - |
dc.subject.keywordPlus | ELECTROCHEMICAL REDUCTION | - |
dc.subject.keywordPlus | CURRENT-DENSITY | - |
dc.subject.keywordPlus | CARBON-DIOXIDE | - |
dc.subject.keywordPlus | ELECTROREDUCTION | - |
dc.subject.keywordPlus | TIN | - |
dc.subject.keywordPlus | CATALYSTS | - |
dc.subject.keywordPlus | ACID | - |
dc.subject.keywordPlus | CONVERSION | - |
dc.subject.keywordPlus | EVOLUTION | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.