Full metadata record

DC Field Value Language
dc.contributor.author유의상-
dc.contributor.authorChae, Kyomin-
dc.contributor.author김태현-
dc.contributor.author이종수-
dc.contributor.authorSeo, Jungmok-
dc.contributor.author김인수-
dc.contributor.authorChung, Aram J.-
dc.contributor.authorLee, Sin­Doo-
dc.contributor.authorRyu, Yong­Sang-
dc.date.accessioned2024-01-12T03:31:58Z-
dc.date.available2024-01-12T03:31:58Z-
dc.date.created2022-02-23-
dc.date.issued2022-04-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76769-
dc.description.abstractWith narrow and dense nanoarchitectures increasingly adopted to improve optical functionality, achieving the complete wetting of photonic devices is required when aiming at underwater molecule detection over the water-repellent optical materials. Despite continuous advances in photonic applications, real-time monitoring of nanoscale wetting transitions across nanostructures with 10-nm gaps, the distance at which photonic performance is maximized, remains a chronic hurdle when attempting to quantify the water influx and molecules therein. For this reason, the present study develops a photonic switch that transforms the wetting transition into perceivable color changes using a liquid-permeable Fabry-Perot resonator. Electro-capillary-induced Cassie-to-Wenzel transitions produce an optical memory effect in the photonic switch, as confirmed by surface-energy analysis, simulations, and an experimental demonstration. The results show that controlling the wetting behavior using the proposed photonic switch is a promising strategy for the integration of aqueous media with photonic hotspots in plasmonic nanostructures such as biochemical sensors.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleDevelopment of a Photonic Switch via Electro-Capillarity-Induced Water Penetration Across a 10-nm Gap-
dc.typeArticle-
dc.identifier.doi10.1002/smll.202107060-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSMALL, v.18, no.14-
dc.citation.titleSMALL-
dc.citation.volume18-
dc.citation.number14-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000758091100001-
dc.identifier.scopusid2-s2.0-85124891318-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSUPERHYDROPHOBIC BREAKDOWN-
dc.subject.keywordPlusREFRACTIVE-INDEX-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusCOLOR-
dc.subject.keywordPlusWETTABILITY-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusPLATFORM-
dc.subject.keywordPlusLIQUIDS-
dc.subject.keywordPlusNANO-
dc.subject.keywordAuthorFabry-Perot resonators-
dc.subject.keywordAuthornanogaps-
dc.subject.keywordAuthorrefractive index sensors-
dc.subject.keywordAuthortunable structural color-
dc.subject.keywordAuthorwetting transition-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE