Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 유의상 | - |
dc.contributor.author | Chae, Kyomin | - |
dc.contributor.author | 김태현 | - |
dc.contributor.author | 이종수 | - |
dc.contributor.author | Seo, Jungmok | - |
dc.contributor.author | 김인수 | - |
dc.contributor.author | Chung, Aram J. | - |
dc.contributor.author | Lee, SinDoo | - |
dc.contributor.author | Ryu, YongSang | - |
dc.date.accessioned | 2024-01-12T03:31:58Z | - |
dc.date.available | 2024-01-12T03:31:58Z | - |
dc.date.created | 2022-02-23 | - |
dc.date.issued | 2022-04 | - |
dc.identifier.issn | 1613-6810 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/76769 | - |
dc.description.abstract | With narrow and dense nanoarchitectures increasingly adopted to improve optical functionality, achieving the complete wetting of photonic devices is required when aiming at underwater molecule detection over the water-repellent optical materials. Despite continuous advances in photonic applications, real-time monitoring of nanoscale wetting transitions across nanostructures with 10-nm gaps, the distance at which photonic performance is maximized, remains a chronic hurdle when attempting to quantify the water influx and molecules therein. For this reason, the present study develops a photonic switch that transforms the wetting transition into perceivable color changes using a liquid-permeable Fabry-Perot resonator. Electro-capillary-induced Cassie-to-Wenzel transitions produce an optical memory effect in the photonic switch, as confirmed by surface-energy analysis, simulations, and an experimental demonstration. The results show that controlling the wetting behavior using the proposed photonic switch is a promising strategy for the integration of aqueous media with photonic hotspots in plasmonic nanostructures such as biochemical sensors. | - |
dc.language | English | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.title | Development of a Photonic Switch via Electro-Capillarity-Induced Water Penetration Across a 10-nm Gap | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/smll.202107060 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | SMALL, v.18, no.14 | - |
dc.citation.title | SMALL | - |
dc.citation.volume | 18 | - |
dc.citation.number | 14 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000758091100001 | - |
dc.identifier.scopusid | 2-s2.0-85124891318 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | SUPERHYDROPHOBIC BREAKDOWN | - |
dc.subject.keywordPlus | REFRACTIVE-INDEX | - |
dc.subject.keywordPlus | SURFACE | - |
dc.subject.keywordPlus | COLOR | - |
dc.subject.keywordPlus | WETTABILITY | - |
dc.subject.keywordPlus | RESISTANCE | - |
dc.subject.keywordPlus | PLATFORM | - |
dc.subject.keywordPlus | LIQUIDS | - |
dc.subject.keywordPlus | NANO | - |
dc.subject.keywordAuthor | Fabry-Perot resonators | - |
dc.subject.keywordAuthor | nanogaps | - |
dc.subject.keywordAuthor | refractive index sensors | - |
dc.subject.keywordAuthor | tunable structural color | - |
dc.subject.keywordAuthor | wetting transition | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.