Full metadata record

DC Field Value Language
dc.contributor.authorHu, Suman-
dc.contributor.authorKang, Jaehyun-
dc.contributor.authorKim, Taeyoon-
dc.contributor.authorLee, Suyoun-
dc.contributor.authorPark, Jong Keuk-
dc.contributor.authorKim, Inho-
dc.contributor.authorKim, Jaewook-
dc.contributor.authorKwak, Joon Young-
dc.contributor.authorPark, Jongkil-
dc.contributor.authorKim, Gyu-Tae-
dc.contributor.authorChoi, Shinhyun-
dc.contributor.authorJeong, Yeonjoo-
dc.date.accessioned2024-01-12T03:32:54Z-
dc.date.available2024-01-12T03:32:54Z-
dc.date.created2022-02-21-
dc.date.issued2022-01-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/76813-
dc.description.abstractNeuromorphic hardware is a system with massive potential to enable efficient computing by mimicking the human brain. The novel system processes information using neuron spikes (Action Potentials) and the synaptic connections between neurons are trained using biologically plausible methods like spike-timing-dependent plasticity (STDP). Memristor is one of the promising candidates to implement such neuromorphic hardware. Two types of memristors, diffusive and drift, have been proposed to form a synapse showing faithful emulation of STDP, where the diffusion effect is used to trace the spike timing history crucial for STDP and the drift memristor keeps the weight information in a longer time scale. The purpose of this paper is to systematically investigate STDP characteristics in such a synapse with serially connected two memristors using SPICE models. The results show that STDP properties are strongly dependent on device parameters and even the shape of STDP curves is modified. Different shapes of the STDP curve were identified. The results and analysis could support the design of emerging device-based synapses, which can faithfully mimic biological STDP characteristics for future neuromorphic systems.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleSPICE Study of STDP Characteristics in a Drift and Diffusive Memristor-Based Synapse for Neuromorphic Computing-
dc.typeArticle-
dc.identifier.doi10.1109/ACCESS.2022.3140476-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Access, v.10, pp.6381 - 6392-
dc.citation.titleIEEE Access-
dc.citation.volume10-
dc.citation.startPage6381-
dc.citation.endPage6392-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000744489900001-
dc.identifier.scopusid2-s2.0-85122576480-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusNETWORKS-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordAuthorImmune system-
dc.subject.keywordAuthorNeurons-
dc.subject.keywordAuthorSPICE-
dc.subject.keywordAuthorShape-
dc.subject.keywordAuthorBiological system modeling-
dc.subject.keywordAuthorCa-2+-
dc.subject.keywordAuthordrift memristor-
dc.subject.keywordAuthordiffusive memristor-
dc.subject.keywordAuthorhump-
dc.subject.keywordAuthorSTDP-
dc.subject.keywordAuthorSPICE simulation-
dc.subject.keywordAuthorvoltage division-
dc.subject.keywordAuthorMemristors-
dc.subject.keywordAuthorSynapses-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE