Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi Junhyuk | - |
dc.contributor.author | KIM HYUNG MIN | - |
dc.date.accessioned | 2024-01-12T04:41:32Z | - |
dc.date.available | 2024-01-12T04:41:32Z | - |
dc.date.created | 2021-09-29 | - |
dc.date.issued | 2019-09 | - |
dc.identifier.issn | 2572-7672 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/78444 | - |
dc.description.abstract | In this study, we demonstrate real-time gait intention recognition algorithm which can decode voluntary gait execution from electroencephalography (EEG) for controlling the lowerlimb exoskeleton. EEG gait intention features were measured by Mu-band Event-Related Desynchronization (ERD) and classified. The Receiver Operating Characteristic (ROC) curve was used for clarifying the classification performance corresponding to the length of training data. We also proposed a modified threshold method for time series binary classification to minimize the false detection rate. | - |
dc.language | English | - |
dc.publisher | IEEE | - |
dc.title | Real-time Decoding of EEG Gait Intention for Controlling a Lower-limb Exoskeleton System | - |
dc.type | Conference | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | 7th International Winter Conference on Brain-Computer Interface (BCI), pp.30 - 32 | - |
dc.citation.title | 7th International Winter Conference on Brain-Computer Interface (BCI) | - |
dc.citation.startPage | 30 | - |
dc.citation.endPage | 32 | - |
dc.citation.conferencePlace | KO | - |
dc.citation.conferencePlace | 하이원리조트 | - |
dc.citation.conferenceDate | 2019-02-18 | - |
dc.relation.isPartOf | 2019 7TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI) | - |
dc.identifier.wosid | 000492868700006 | - |
dc.identifier.scopusid | 2-s2.0-85068331582 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.