Full metadata record

DC Field Value Language
dc.contributor.authorChoi Junhyuk-
dc.contributor.authorKIM HYUNG MIN-
dc.date.accessioned2024-01-12T04:41:32Z-
dc.date.available2024-01-12T04:41:32Z-
dc.date.created2021-09-29-
dc.date.issued2019-09-
dc.identifier.issn2572-7672-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/78444-
dc.description.abstractIn this study, we demonstrate real-time gait intention recognition algorithm which can decode voluntary gait execution from electroencephalography (EEG) for controlling the lowerlimb exoskeleton. EEG gait intention features were measured by Mu-band Event-Related Desynchronization (ERD) and classified. The Receiver Operating Characteristic (ROC) curve was used for clarifying the classification performance corresponding to the length of training data. We also proposed a modified threshold method for time series binary classification to minimize the false detection rate.-
dc.languageEnglish-
dc.publisherIEEE-
dc.titleReal-time Decoding of EEG Gait Intention for Controlling a Lower-limb Exoskeleton System-
dc.typeConference-
dc.description.journalClass1-
dc.identifier.bibliographicCitation7th International Winter Conference on Brain-Computer Interface (BCI), pp.30 - 32-
dc.citation.title7th International Winter Conference on Brain-Computer Interface (BCI)-
dc.citation.startPage30-
dc.citation.endPage32-
dc.citation.conferencePlaceKO-
dc.citation.conferencePlace하이원리조트-
dc.citation.conferenceDate2019-02-18-
dc.relation.isPartOf2019 7TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI)-
dc.identifier.wosid000492868700006-
dc.identifier.scopusid2-s2.0-85068331582-
Appears in Collections:
KIST Conference Paper > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE