Full metadata record

DC Field Value Language
dc.contributor.authorLim In Seop-
dc.contributor.authorYoonseong, Jeong-
dc.contributor.authorYeonsu Kwak-
dc.contributor.authoron eui rim-
dc.contributor.authorQUAN NGUYEN DAO-
dc.contributor.authorJeong, Hyangsoo-
dc.contributor.authorSohn, Hyuntae-
dc.contributor.authorNam, Suk Woo-
dc.contributor.authorLim, Tae Hoon-
dc.contributor.authorM?ller, Karsten-
dc.contributor.authorKim, Yongmin-
dc.date.accessioned2024-01-12T06:31:22Z-
dc.date.available2024-01-12T06:31:22Z-
dc.date.created2023-11-27-
dc.date.issued2023-12-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/79697-
dc.description.abstractWe present a highly efficient method for hydrogen release from perhydro-benzyltoluene (H12-BT), one of the most promising liquid organic hydrogen carriers (LOHCs) in the current energy landscape. Despite the demand for scalability, dehydrogenation of H12-BT has so far only been subject to published studies on batch reactors at the laboratory scale. Here, we establish a continuous bench-scale 2.3 Nm3-H2/h-level (5 kg-H2/day) catalytic dehydrogenation system using H12-BT. Parametric analysis provides insights into operational and design strategies for large-scale H12-BT dehydrogenation systems. The proposed model for the system energy analysis enables outlining a path to elevate the round-trip efficiency (RTE). The basis of this is the incorporation of well-managed thermal systems and hydrogenation-based power generation, such as solid oxide fuel cells (SOFCs) and combined cycle gas turbines (CCGTs). These strategies, quantitatively assessed, demonstrate the feasibility above 70 %. Through techno-economic analyses (TEA), the dehydrogenation cost reduction associated with efficiency improvement is assessed, showing up to approximately 11.8 % cost reduction. This study propels efficient dehydrogenation system advancement, fostering a sustainable hydrogen supply within the global chain.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleMaximizing clean hydrogen release from perhydro-benzyltoluene: Energy-efficient scale-up strategies and techno-economic analyses-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2023.147296-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.478-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume478-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001119282800001-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordAuthorDehydrogenation-
dc.subject.keywordAuthorBenzyltoluene-
dc.subject.keywordAuthorLOHC-
dc.subject.keywordAuthorEnergy efficiency-
dc.subject.keywordAuthorTechno-economic analyses-
dc.subject.keywordAuthorScalability-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE