Full metadata record

DC Field Value Language
dc.contributor.authorAbid Inayat-
dc.contributor.authorMuhammad Faizan-
dc.contributor.authorIrfan Ullah-
dc.contributor.authorAli Haider-
dc.contributor.authorKyung-Wan Nam-
dc.contributor.authorKim, Ji Young-
dc.contributor.authorManawwer Alam-
dc.contributor.authorSyed Mustansar Abbas-
dc.date.accessioned2024-01-12T06:31:25Z-
dc.date.available2024-01-12T06:31:25Z-
dc.date.created2023-11-23-
dc.date.issued2023-12-
dc.identifier.issn1572-6657-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/79700-
dc.description.abstractThe delicate architecture of hybrid/mixed metal oxides with different working mechanisms can display synergistically improved effects in energy storage applications. Herein, we report the amorphous SnO2-WO3 hybrid nanocomposite and its successful incorporation in graphene oxide (GO) to fabricate ternary nanocomposite (SnO2-WO3/GO) through a facile solvothermal and sonication approach. Both binary and ternary nanocomposites were investigated as electrode materials in lithium-ion batteries (LIBs) and battery-type supercapacitor applications. Notably, the ternary nanocomposite delivers a lower discharge capacity of 995 mA h g?1 compared to binary nanocomposite (1120 mA h g?1). However, possesses a low-capacity loss of 39 % than binary nanocomposite (79 %) and retains a higher discharge high-capacity of 196 mA h g?1 with Coulombic efficiency of above 95 % than binary nanocomposite (97 mA h g?1) with Coulombic efficiency of ∼ 100 % after 100 dis(charge) cycles. The fabricated nanocomposites when evaluated in supercapacitor application show battery-type charge storage behavior. The maximum capacity observed for binary and ternary nanocomposites is 380 and 466 C g?1, respectively at a current density of 1 A g?1. The ternary nanocomposite reflects a high-capacity retention of 85.75 % compared to binary nanocomposite (72.12 %) after 1000 cycles at a high current density of 5 A g?1.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleGraphene oxide supported SnO2-WO3 nanocomposite as electrode material for lithium-ion batteries and battery-type supercapacitor-
dc.typeArticle-
dc.identifier.doi10.1016/j.jelechem.2023.117903-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Electroanalytical Chemistry, v.951-
dc.citation.titleJournal of Electroanalytical Chemistry-
dc.citation.volume951-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001156722500001-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOSPHERES-
dc.subject.keywordPlusNANOFIBERS-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordPlusHYBRID-
dc.subject.keywordPlusENERGY-
dc.subject.keywordAuthorLithium-ion batteries-
dc.subject.keywordAuthorSnO2-
dc.subject.keywordAuthorWO3-
dc.subject.keywordAuthorCore-shell-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE