Full metadata record

DC Field Value Language
dc.contributor.authorKim, Dong Hwan-
dc.contributor.authorHwang, Soonwook-
dc.contributor.authorLim, Myotaeg-
dc.contributor.authorOh, Yong hwan-
dc.contributor.authorLee, Yisoo-
dc.date.accessioned2024-01-12T06:32:17Z-
dc.date.available2024-01-12T06:32:17Z-
dc.date.created2023-11-27-
dc.date.issued2023-11-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/79741-
dc.description.abstractJoint velocity estimation is one of the essential properties that implement for accurate robot motion control. Although conventional approaches such as numerical differentiation of position measurements and model-based observers exhibit feasible performance for velocity estimation, instability can be occurred because of phase lag or model inaccuracy. This study proposes a model-free approach that can estimate the velocity with less phase lag by batch training of a neural network with pre-collected encoder measurements. By learning a weighted moving average, the proposed method successfully estimates the velocity with less latency imposed by the noise attenuation compared to the conventional methods. Practical experiments with two robot platforms with high degrees of freedom are conducted to validate the effectiveness of the proposed method.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleNeural Network-Based Joint Velocity Estimation Method for Improving Robot Control Performance-
dc.typeArticle-
dc.identifier.doi10.1109/ACCESS.2023.3333388-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Access, v.11, pp.130517 - 130526-
dc.citation.titleIEEE Access-
dc.citation.volume11-
dc.citation.startPage130517-
dc.citation.endPage130526-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001120897000001-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.type.docTypeArticle-
dc.subject.keywordPlusTRACKING CONTROL-
dc.subject.keywordPlusFORCE CONTROL-
dc.subject.keywordPlusMANIPULATORS-
dc.subject.keywordPlusPOSITION-
dc.subject.keywordPlusOBSERVER-
dc.subject.keywordPlusTORQUE-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusBANDWIDTH-
dc.subject.keywordAuthorRobots-
dc.subject.keywordAuthorActuators-
dc.subject.keywordAuthorObservers-
dc.subject.keywordAuthorComputational modeling-
dc.subject.keywordAuthorMathematical models-
dc.subject.keywordAuthorLow-pass filters-
dc.subject.keywordAuthorRobot control-
dc.subject.keywordAuthorNeural networks-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorState estimation-
dc.subject.keywordAuthorVelocity control-
dc.subject.keywordAuthorRobotics-
dc.subject.keywordAuthorrobot control-
dc.subject.keywordAuthorneural network-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorstate estimation-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE