Full metadata record

DC Field Value Language
dc.contributor.authorLee, Youjin-
dc.contributor.authorLee, Soo Hyun-
dc.contributor.authorHan, Sun Kyung-
dc.contributor.authorPark, Jiheon-
dc.contributor.authorLee, Dongwook-
dc.contributor.authorPreston, Daniel J.-
dc.contributor.authorKim, In Soo-
dc.contributor.authorHersam, Mark C.-
dc.contributor.authorKwon, Yongwoo-
dc.contributor.authorShong, Bonggeun-
dc.contributor.authorLee, Won-Kyu-
dc.date.accessioned2024-01-12T06:32:34Z-
dc.date.available2024-01-12T06:32:34Z-
dc.date.created2023-11-21-
dc.date.issued2023-11-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/79755-
dc.description.abstractElectrocatalytic water splitting produces hydrogen fuel, but its dependence on expensive platinum-based electrocatalysts has limited industrial-scale implementation. Here, we report an approach for the activation of electrochemically inert layered MoTe2 that results in a low-cost, scalable, and readily available hydrogen evolution reaction (HER) catalyst for water splitting. This approach relies on the transfer of mechanically exfoliated MoTe2 flakes to gold thin films on prestrained thermoplastic substrates. By relieving the prestrain, a tunable level of internal tensile strain is developed in the flakes as a result of spontaneously formed surface wrinkles, resulting in a local semiconductor-to-metal phase transition to form phase boundaries. This strain engineering enhances the HER performance of the MoTe2 with reduced charge transfer resistance, and in operando activation of the flakes further amplifies the electrochemical activity, rivaling that of platinum. Density functional theory calculations provide fundamental insight into how strain-induced heterophase boundaries promoted HER activity.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleStrain-Enabled Local Phase Control in Layered MoTe2 for Enhanced Electrocatalytic Hydrogen Evolution-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.3c01941-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Energy Letters, v.8, no.11, pp.4716 - 4725-
dc.citation.titleACS Energy Letters-
dc.citation.volume8-
dc.citation.number11-
dc.citation.startPage4716-
dc.citation.endPage4725-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001103648700001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusACTIVE EDGE SITES-
dc.subject.keywordPlusMONOLAYER MOTE2-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusMULTISCALE-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusH-2-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE