Full metadata record

DC Field Value Language
dc.contributor.authorLee, Seongbin-
dc.contributor.authorKim, Sooyeon-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorKim, Dong-Wan-
dc.contributor.authorLee, Ji won-
dc.contributor.authorOh, Youngtak-
dc.date.accessioned2024-01-12T06:33:45Z-
dc.date.available2024-01-12T06:33:45Z-
dc.date.created2023-09-08-
dc.date.issued2023-10-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/79813-
dc.description.abstractVolatile organic compounds (VOCs) produced from a wide range of industrial and household chemicals are toxic to human health. Hence, effective VOC removal strategies such as adsorption are essential. Developing a carbon-based adsorbent for the selective adsorption of VOCs without affecting its inherent adsorption capacity is challenging. In this study, we prepared three Fe3O4-doped reduced graphene oxide (Fe-rGO) materials via a liquid-phase reduction technique under acidic, neutral, and basic coagulation conditions. The Fe-rGO adsorbents exhibited a hydrolysis-induced GO network with a wrinkled layer morphology. Acidic conditions yielded an rGO surface with a large number of O-functional groups (epoxy and carboxylic groups), which act as anchoring sites for the growth of Fe3O4 nanoparticles. The synergistic effect of Fe3O4 domains and O active sites led to the effective and selective adsorption of amphiphilic VOCs including C4-C7 alkanes, ketones, and aromatic compounds (10.8?63.2 mg g?1). Experimental analyses and density functional theory calculations revealed three crucial factors that determine the improved amphiphilic VOC adsorption of the Fe-rGO materials: geometry of the adsorbate, hydrogen bonding at the rGO surface, and Fe3O4 nanoparticles controlling the charge density. Our facile and effective rGO surface manipulation strategy involving the fabrication of a metal oxide?carbon heterostructure provides a selective adsorption platform for amphiphilic VOCs.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleEffect of adsorbate geometry and hydrogen bonding on the enhanced adsorption of VOCs by an interfacial Fe3O4-rGO heterostructure-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2023.145346-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.473-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume473-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001087259500001-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusVOLATILE ORGANIC-COMPOUNDS-
dc.subject.keywordPlusRAY PHOTOELECTRON-SPECTROSCOPY-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusACTIVATED CARBON-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusRAMAN-SPECTRA-
dc.subject.keywordPlusPARTICLE-SIZE-
dc.subject.keywordPlusIRON-OXIDE-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordAuthorVolatile organic compounds-
dc.subject.keywordAuthorReduced graphene oxide-
dc.subject.keywordAuthorInterfacial heterostructure-
dc.subject.keywordAuthorGeometric gas adsorption-
dc.subject.keywordAuthorDensity functional theory-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE