Full metadata record

DC Field Value Language
dc.contributor.authorLiu, Naijia-
dc.contributor.authorSohn, Sungwoo-
dc.contributor.authorNa, Min young-
dc.contributor.authorPARK, GI HOON-
dc.contributor.authorRaj, Arindam-
dc.contributor.authorLiu, Guannan-
dc.contributor.authorKube, Sebastian A.-
dc.contributor.authorYuan, Fusen-
dc.contributor.authorLiu, Yanhui-
dc.contributor.authorChang, Hye Jung-
dc.contributor.authorSchroers, Jan-
dc.date.accessioned2024-01-12T06:34:03Z-
dc.date.available2024-01-12T06:34:03Z-
dc.date.created2023-11-20-
dc.date.issued2023-09-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/79827-
dc.description.abstractThe underlying atomistic mechanism of deformation is a central problem in mechanics and materials science. Whereas deformation of crystalline metals is fundamentally understood, the understanding of deformation of amorphous metals lacks behind, particularly identifying the involved temporal and spatial scales. Here, we reveal that at small scales the size-dependent deformation behavior of amorphous metals significantly deviates from homogeneous flow, exhibiting increasing deformation rate with reducing size and gradually shifted composition. This transition suggests the deformation mechanism changes from collective atomic transport by viscous flow to individual atomic transport through interface diffusion. The critical length scale of the transition is temperature dependent, exhibiting a maximum at the glass transition. While viscous flow does not discriminate among alloy constituents, diffusion does and the constituent element with higher diffusivity deforms faster. Our findings yield insights into nano-mechanics and glass physics and may suggest alternative processing methods to epitaxially grow metallic glasses.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleSize-dependent deformation behavior in nanosized amorphous metals suggesting transition from collective to individual atomic transport-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-023-41582-2-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.14, no.1-
dc.citation.titleNature Communications-
dc.citation.volume14-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001128353900011-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusBRITTLE-
dc.subject.keywordPlusLIQUID-
dc.subject.keywordPlusSTATE-
dc.subject.keywordPlusFLOW-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE