Full metadata record

DC Field Value Language
dc.contributor.authorShin, Sunghee-
dc.contributor.authorKwak, Jin Hwan-
dc.contributor.authorOh, Si Hyoung-
dc.contributor.authorKim, Hyung-Seok-
dc.contributor.authorYu, Seung-Ho-
dc.contributor.authorHee-Dae Lim-
dc.date.accessioned2024-01-12T06:35:38Z-
dc.date.available2024-01-12T06:35:38Z-
dc.date.created2023-07-06-
dc.date.issued2023-06-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/79904-
dc.description.abstractPractical applications of Mg-metal batteries (MMBs) have been plagued by a critical bottleneck─the formation of a native oxide layer on the Mg-metal interface─which inevitably limits the use of conventional nontoxic electrolytes. The major aim of this work was to propose a simple and effective way to reversibly operate MMBs in combination with Mg(TFSI)2-diglyme electrolyte by forming a Ga-rich protective layer on the Mg metal (GPL@Mg). Mg metal was carefully reacted with a GaCl3 solution to trigger a galvanic replacement reaction between Ga3+ and Mg, resulting in the layering of a stable and ion-conducting Ga-rich protective film while preventing the formation of a native insulating layer. Various characterization tools were applied to analyze GPL@Mg, and it was demonstrated to contain inorganic-rich compounds (MgCO3, Mg(OH)2, MgCl2, Ga2O3, GaCl3, and MgO) roughly in a double-layered structure. The artificial GPL on Mg was effective in greatly reducing the high polarization for Mg plating and stripping in diglyme-based electrolyte, and the stable cycling was maintained for over 200 h. The one-step process suggested in this work offers insights into exploring a cost-effective approach to cover the Mg-metal surface with an ion-conducting artificial layer, which will help to practically advance MMBs.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleReversible Mg-Metal Batteries Enabled by a Ga-Rich Protective Layer through One-Step Interface Engineering-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.2c20571-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.15, no.23, pp.28684 - 28691-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume15-
dc.citation.number23-
dc.citation.startPage28684-
dc.citation.endPage28691-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001006325900001-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROLYTE INTERPHASE LAYER-
dc.subject.keywordPlusLITHIUM-ION-
dc.subject.keywordPlusSTRUCTURAL-ANALYSIS-
dc.subject.keywordPlusDENDRITE GROWTH-
dc.subject.keywordPlusMAGNESIUM-
dc.subject.keywordPlusSEI-
dc.subject.keywordPlusPASSIVATION-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCORROSION-
dc.subject.keywordAuthormagnesium-
dc.subject.keywordAuthorMg-metal battery-
dc.subject.keywordAuthorartificial layer-
dc.subject.keywordAuthorpassivation film-
dc.subject.keywordAuthorMg surface-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE