Full metadata record

DC Field Value Language
dc.contributor.authorXiao, Xiangyun-
dc.contributor.authorLee, Seok-Ho-
dc.contributor.authorHand, Geun-Ho-
dc.contributor.authorTag, Kyong-Ryol-
dc.contributor.authorAhn, Jae Pyoung-
dc.contributor.authorKim, Hong-Kyu-
dc.contributor.authorLee, Kwan-young-
dc.contributor.authorYu, Taekyung-
dc.date.accessioned2024-01-12T06:35:57Z-
dc.date.available2024-01-12T06:35:57Z-
dc.date.created2023-03-13-
dc.date.issued2023-06-
dc.identifier.issn1226-086X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/79920-
dc.description.abstractStructure engineering is an integrated strategy to regulate the performance of nanoparticles for various catalytic reactions, since the nanoparticle composition, shape, and interface affect the reaction activity and selectivity. Herein, we report a simple synthesis of clear core?shell structured Pd@Fe nanocubes with different shell thicknesses, which exhibit higher H2 conversion efficiency in direct hydrogen peroxide generation compared with ordinary Pd cubes. This result can be attributed to two main reasons: (i) the conformal growth of the Fe oxide shell consisting of loose structured Fe3O4 favors H2 penetration, and (ii) the capping agent (Br?) on the Pd?Fe3O4 interface that blocks the Pd active sites is removed during the shell formation. Therefore, the Fe oxide shell of the Pd@Fe nanoparticles not only helps maintaining the morphology of the nanoparticles but also increases the number of active sites on the inner core surface, confirming the advantage of the core?shell structure.-
dc.languageEnglish-
dc.publisher한국공업화학회-
dc.titleEffect of structure of Pd@Fe core-shell cubes on the enhancement of H2 conversion in direct reaction of H2 and O2-
dc.typeArticle-
dc.identifier.doi10.1016/j.jiec.2023.02.029-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Industrial and Engineering Chemistry, v.122, pp.285 - 291-
dc.citation.titleJournal of Industrial and Engineering Chemistry-
dc.citation.volume122-
dc.citation.startPage285-
dc.citation.endPage291-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART002968058-
dc.identifier.wosid000981960900001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusSITES-
dc.subject.keywordPlusH2O2-
dc.subject.keywordAuthorCore@shell-
dc.subject.keywordAuthorStructure effect-
dc.subject.keywordAuthorInterface-
dc.subject.keywordAuthorH-2 conversion-
dc.subject.keywordAuthorMagnetic separation-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE