Full metadata record

DC Field Value Language
dc.contributor.authorKIHOON BANG-
dc.contributor.authorHong, Doosun-
dc.contributor.authorPark, Youngtae-
dc.contributor.author김동훈-
dc.contributor.author한상수-
dc.contributor.authorLee, Hyuck Mo-
dc.date.accessioned2024-01-12T06:36:08Z-
dc.date.available2024-01-12T06:36:08Z-
dc.date.created2023-06-18-
dc.date.issued2023-05-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/79929-
dc.description.abstractSurface Pourbaix diagrams are critical to understanding the stability of nanomaterials in electrochemical environments. Their construction based on density functional theory is, however, prohibitively expensive for real-scale systems, such as several nanometer-size nanoparticles (NPs). Herein, with the aim of accelerating the accurate prediction of adsorption energies, we developed a bond-type embedded crystal graph convolutional neural network (BE-CGCNN) model in which four bonding types were treated differently. Owing to the enhanced accuracy of the bond-type embedding approach, we demonstrate the construction of reliable Pourbaix diagrams for very large-size NPs involving up to 6525 atoms (approximately 4.8 nm in diameter), which enables the exploration of electrochemical stability over various NP sizes and shapes. BE-CGCNN-based Pourbaix diagrams well reproduce the experimental observations with increasing NP size. This work suggests a method for accelerated Pourbaix diagram construction for real-scale and arbitrarily shaped NPs, which would significantly open up an avenue for electrochemical stability studies.</jats:p>-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleMachine learning-enabled exploration of the electrochemical stability of real-scale metallic nanoparticles-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-023-38758-1-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.14, no.1-
dc.citation.titleNature Communications-
dc.citation.volume14-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001001080600025-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusADSORBATE-ADSORBATE INTERACTIONS-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusADSORPTION ENERGIES-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusCO-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusAPPROXIMATION-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE