Fluorine-Substituted Lithium Chloride Solid Electrolytes for High-Voltage All-Solid-State Lithium-Ion Batteries

Authors
Kim, SooyeonLee, YongheumKim, KwangnamWood, Brandon C.Han, Sang SooYu, Seungho
Issue Date
2024-01
Publisher
American Chemical Society
Citation
ACS Energy Letters, v.9, no.1, pp.38 - 47
Abstract
Lithium ternary halides are promising solid electrolytes, owing to their high ionic conductivity and reasonably high oxidative and chemical stability. Recently, fluorine substitution in Li3MCl6 has been suggested as a promising approach for further enhancing oxidation stability. Accordingly, this study outlines a material design strategy for F-substituted Li3MCl6 through systematic theoretical analyses. Calculations reveal that the mixing limit of F in Li3MCl6?xFx is in the range of 0.5?1.5, and the resulting Li3MCl6?xFx phases can retain ionic conductivity above 1 mS/cm up to x = 1.0. The calculations also predict that the formation of F-containing passivating phases could increase the oxidation potential for Li3MCl5F to ∼6.3 V. The proposed material design strategy is validated through the synthesis of Li3YCl5F, which is confirmed to show both high ionic conductivity and enhanced oxidation stability. The design guidelines presented herein can accelerate the potential use of halide-based electrolyte chemistries in high-voltage all-solid-state batteries.
Keywords
HIGH-ENERGY; METAL; CHALLENGES; CONDUCTORS
ISSN
2380-8195
URI
https://pubs.kist.re.kr/handle/201004/112914
DOI
10.1021/acsenergylett.3c02307
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE