Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Sanghyeon-
dc.contributor.authorMoon, Taehwan-
dc.contributor.authorWang, Gunuk-
dc.contributor.authorYang, J. Joshua-
dc.date.accessioned2024-01-19T08:02:27Z-
dc.date.available2024-01-19T08:02:27Z-
dc.date.created2024-01-04-
dc.date.issued2023-12-
dc.identifier.issn2196-5404-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113017-
dc.description.abstractMemristors have attracted increasing attention due to their tremendous potential to accelerate data-centric computing systems. The dynamic reconfiguration of memristive devices in response to external electrical stimuli can provide highly desirable novel functionalities for computing applications when compared with conventional complementary-metal-oxide-semiconductor (CMOS)-based devices. Those most intensively studied and extensively reviewed memristors in the literature so far have been filamentary type memristors, which typically exhibit a relatively large variability from device to device and from switching cycle to cycle. On the other hand, filament-free switching memristors have shown a better uniformity and attractive dynamical properties, which can enable a variety of new computing paradigms but have rarely been reviewed. In this article, a wide range of filament-free switching memristors and their corresponding computing applications are reviewed. Various junction structures, switching properties, and switching principles of filament-free memristors are surveyed and discussed. Furthermore, we introduce recent advances in different computing schemes and their demonstrations based on non-filamentary memristors. This Review aims to present valuable insights and guidelines regarding the key computational primitives and implementations enabled by these filament-free switching memristors.-
dc.languageEnglish-
dc.publisherSpringer | Korea Nano Technology Research Society-
dc.titleFilament-free memristors for computing-
dc.typeArticle-
dc.identifier.doi10.1186/s40580-023-00407-0-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Convergence, v.10, no.1-
dc.citation.titleNano Convergence-
dc.citation.volume10-
dc.citation.number1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.wosid001126319900001-
dc.identifier.scopusid2-s2.0-85179946942-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeReview-
dc.subject.keywordPlusRESISTIVE MEMORY-
dc.subject.keywordPlusMOTT TRANSITION-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusFUTURE-
dc.subject.keywordPlusFERROELECTRIC TUNNEL-JUNCTIONS-
dc.subject.keywordPlusLOW-POWER-
dc.subject.keywordPlusCONCENTRATION POLARIZATION-
dc.subject.keywordPlusSYNAPTIC PLASTICITY-
dc.subject.keywordPlusDYNAMIC MEMRISTOR-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE