Unraveling the Significance of Li+/e(-)/O-2 Phase Boundaries with a 3D-Patterned Cu Electrode for Li-O-2 Batteries

Authors
Hyun, GayeaPark, MihuiBae, GwangminChung, Jong-woanHam, YoungjinCho, SeonyongJung, SeungwonKim, SuhwanLee, Yong MinKang, Yong-MookJeon, Seokwoo
Issue Date
2023-12
Publisher
John Wiley & Sons Ltd.
Citation
Advanced Functional Materials, v.33, no.49
Abstract
The reaction kinetics at a triple-phase boundary (TPB) involving Li+, e(-), and O-2 dominate their electrochemical performances in Li-O-2 batteries. Early studies on catalytic activities at Li+/e(-)/O-2 interfaces have enabled great progress in energy efficiency; however, localized TPBs within the cathode hamper innovations in battery performance toward commercialization. Here, the effects of homogenized TPBs on the reaction kinetics in air cathodes with structurally designed pore networks in terms of pore size, interconnectivity, and orderliness are explored. The diffusion fluxes of reactants are visualized by modeling, and the simulated map reveals evenly distributed reaction areas within the periodic open structure. The 3D air cathode provides highly active, homogeneous TPBs over a real electrode scale, thus simultaneously achieving large discharge capacity, unprecedented energy efficiency, and long cyclability via mechanical/electrochemical stress relaxation. Homogeneous TPBs by cathode structural engineering provide a new strategy for improving the reaction kinetics beyond controlling the intrinsic properties of the materials.
Keywords
CATHODE ARCHITECTURE; RATE CAPABILITY; LI2O2; MICROSCOPY; MORPHOLOGY; REDUCTION; MECHANISM; 3D microstructures; electrode structural engineering; Li-O-2 batteries; Li plus; e-; O-2 phase boundaries; porous electrodes
ISSN
1616-301X
URI
https://pubs.kist.re.kr/handle/201004/113074
DOI
10.1002/adfm.202303059
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE