Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Euijoon-
dc.contributor.authorPark, Doohyun-
dc.contributor.authorSon, Geonhui-
dc.contributor.authorBak, Seongwon-
dc.contributor.authorEo, Taejoon-
dc.contributor.authorYoun, Daemyung-
dc.contributor.authorHwang, Dosik-
dc.date.accessioned2024-01-19T08:04:25Z-
dc.date.available2024-01-19T08:04:25Z-
dc.date.created2023-12-21-
dc.date.issued2024-06-
dc.identifier.issn0938-7994-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113098-
dc.description.abstractObjective This study aims to develop a weakly supervised deep learning (DL) model for vertebral-level vertebral compression fracture (VCF) classification using image-level labelled data.Methods The training set included 815 patients with normal (n = 507, 62%) or VCFs (n = 308, 38%). Our proposed model was trained on image-level labelled data for vertebral-level classification. Another supervised DL model was trained with vertebral-level labelled data to compare the performance of the proposed model.Results The test set included 227 patients with normal (n = 117, 52%) or VCFs (n = 110, 48%). For a fair comparison of the two models, we compared sensitivities with the same specificities of the proposed model and the vertebral-level supervised model. The specificity for overall L1-L5 performance was 0.981. The proposed model may outperform the vertebral-level supervised model with sensitivities of 0.770 vs 0.705 (p = 0.080), respectively. For vertebral-level analysis, the specificities for each L1-L5 were 0.974, 0.973, 0.970, 0.991, and 0.995, respectively. The proposed model yielded the same or better sensitivity than the vertebral-level supervised model in L1 (0.750 vs 0.694, p = 0.480), L3 (0.793 vs 0.586, p < 0.05), L4 (0.833 vs 0.667, p = 0.480), and L5 (0.600 vs 0.600, p = 1.000), respectively. The proposed model showed lower sensitivity than the vertebral-level supervised model for L2, but there was no significant difference (0.775 vs 0.825, p = 0.617).Conclusions The proposed model may have a comparable or better performance than the supervised model in vertebral-level VCF classification.-
dc.languageEnglish-
dc.publisherSpringer Verlag-
dc.titleWeakly supervised deep learning for diagnosis of multiple vertebral compression fractures in CT-
dc.typeArticle-
dc.identifier.doi10.1007/s00330-023-10394-9-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEuropean Radiology, v.34, no.06, pp.3750 - 3760-
dc.citation.titleEuropean Radiology-
dc.citation.volume34-
dc.citation.number06-
dc.citation.startPage3750-
dc.citation.endPage3760-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001105133000005-
dc.identifier.scopusid2-s2.0-85176780274-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.type.docTypeArticle-
dc.subject.keywordPlusMANAGEMENT-
dc.subject.keywordPlusNETWORKS-
dc.subject.keywordPlusRISK-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorClassification-
dc.subject.keywordAuthorFractures (Compression)-
dc.subject.keywordAuthorSpine-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE