3D nitrogen-doped carbon frameworks with hierarchical pores and graphitic carbon channels for high-performance hybrid energy storages

Authors
Choi, Jae WonPark, Dong GyuKim, Keon-HanChoi, Won HoPark, Min GyuKang, Jeung Ku
Issue Date
2024-01
Publisher
Royal Society of Chemistry
Citation
Materials Horizons, v.11, no.2, pp.566 - 577
Abstract
In principle, hybrid energy storages can utilize the advantages of capacitor-type cathodes and battery-type anodes, but their cathode and anode materials still cannot realize a high energy density, fast rechargeable capability, and long-cycle stability. Herein, we report a strategy to synthesize cathode and anode materials as a solution to overcome this challenge. Firstly, 3D nitrogen-doped hierarchical porous graphitic carbon (NHPGC) frameworks were synthesized as cathode materials using Co-Zn mixed metal-organic frameworks (MOFs). A high capacity is achieved due to the abundant nitrogen and micropores produced by the MOF nanocages and evaporation of Zn. Also, fast ion/electron transport channels were derived through the Co-catalyzed hierarchical porosity control and graphitization. Moreover, tin oxide precursors were introduced in NHPGC to form the SnO2@NHPGC anode. Operando X-ray diffraction revealed that the rescaled subnanoparticles as anodic units facilitated the high capacity during ion insertion-induced rescaling. Besides, the Sn-N bonds endowed the anode with a cycling stability. Furthermore, the NHPGC cathode and SnO2@NHPGC achieved an ultrahigh energy density (up to 244.5 W h kg-1 for Li and 146.1 W h kg-1 for Na), fast rechargeable capability (up to 93C-rate for Li and 147C-rate for Na) as exhibited by photovoltaic recharge within a minute and a long-cycle stability with similar to 100% coulombic efficiency over 10 000 cycles. 3D nitrogen-doped hierarchical porous graphitic carbon cathode and subnanometric tin oxide nanocrystals anode materials are derived from Co-Zn mixed metal-organic frameworks to achieve high-performance Li-ion and Na-ion hybrid energy storage devices.
Keywords
SODIUM-ION BATTERIES; LITHIUM-ION; ELECTRODES; CAPACITOR
ISSN
2051-6347
URI
https://pubs.kist.re.kr/handle/201004/113104
DOI
10.1039/d3mh01473h
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE