Low-grade waste heat recovery scenarios: Pyroelectric, thermomagnetic, and thermogalvanic thermal energy harvesting
- Authors
- Hur, Sunghoon; Kim, Sangtae; Kim, Hyun-Soo; Kumar, Ajeet; Kwon, Choah; Shin, Joonchul; Kang, Heemin; Sung, Tae Hyun; Ryu, Jungho; Baik, Jeong Min; Song, Hyun-Ceol
- Issue Date
- 2023-09
- Publisher
- Elsevier BV
- Citation
- Nano Energy, v.114
- Abstract
- Identifying reliable and sustainable sources of electricity is a significant challenge of the present time. However, most energy-generation mechanisms produce unavoidable low-grade waste heat as a byproduct while harvesting (or converting) electrical energy from conventional or renewable energy sources. Each year, over 60% of the primary energy is wasted as heat. Accordingly, considerable efforts are being made to convert this waste heat into usable electrical energy using diverse energy conversion materials. In this review, three actively investigated energy conversion mechanisms beyond thermoelectrics, i.e., (1) pyroelectric, (2) thermomagnetic, and (3) thermogalvanic generators, are reviewed and compared from the viewpoint of fundamental theories, critical parameters for high energy conversion efficiency, and current status of materials and devices. The challenges and opportunities in low-grade waste-heat recovery are discussed in terms of material science and structural design. This review provides an overview of the current progress in thermal-energy-harvesting research, future challenges, and opportunities.
- Keywords
- POWER-GENERATION; CONVERSION; FIGURE; MERIT; TECHNOLOGIES; CERAMICS; DEVICES; CYCLE; CELL; SR; Thermal energy harvesting; Pyroelectric; Thermomagnetic; Thermogalvanic; Low grade waste heat
- ISSN
- 2211-2855
- URI
- https://pubs.kist.re.kr/handle/201004/113341
- DOI
- 10.1016/j.nanoen.2023.108596
- Appears in Collections:
- KIST Article > 2023
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.