Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning

Authors
Jun, YohanPark, Yae WonShin, HyungseobShin, YejeeLee, Jeong RyongHan, KyunghwaAhn, Sung SooLim, Soo MeeHwang, DosikLee, Seung-Koo
Issue Date
2023-09
Publisher
Springer Verlag
Citation
European Radiology, v.33, no.9, pp.6124 - 6133
Abstract
ObjectivesTo establish a robust interpretable multiparametric deep learning (DL) model for automatic noninvasive grading of meningiomas along with segmentation.MethodsIn total, 257 patients with pathologically confirmed meningiomas (162 low-grade, 95 high-grade) who underwent a preoperative brain MRI, including T2-weighted (T2) and contrast-enhanced T1-weighted images (T1C), were included in the institutional training set. A two-stage DL grading model was constructed for segmentation and classification based on multiparametric three-dimensional U-net and ResNet. The models were validated in the external validation set consisting of 61 patients with meningiomas (46 low-grade, 15 high-grade). Relevance-weighted Class Activation Mapping (RCAM) method was used to interpret the DL features contributing to the prediction of the DL grading model.ResultsOn external validation, the combined T1C and T2 model showed a Dice coefficient of 0.910 in segmentation and the highest performance for meningioma grading compared to the T2 or T1C only models, with an area under the curve (AUC) of 0.770 (95% confidence interval: 0.644-0.895) and accuracy, sensitivity, and specificity of 72.1%, 73.3%, and 71.7%, respectively. The AUC and accuracy of the combined DL grading model were higher than those of the human readers (AUCs of 0.675-0.690 and accuracies of 65.6-68.9%, respectively). The RCAM of the DL grading model showed activated maps at the surface regions of meningiomas indicating that the model recognized the features at the tumor margin for grading.ConclusionsAn interpretable multiparametric DL model combining T1C and T2 can enable fully automatic grading of meningiomas along with segmentation.
Keywords
CONSENSUS RECOMMENDATIONS; CLINICAL-TRIALS; DIAGNOSIS; PROTOCOL; BRAIN; Interpretable; Deep learning; Magnetic resonance imaging; Meningioma; grading
ISSN
0938-7994
URI
https://pubs.kist.re.kr/handle/201004/113370
DOI
10.1007/s00330-023-09590-4
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE