Wafer-scale Fabrication of Nanometer Silicon Posts for Capacitive Micromachined Ultrasonic Transducers with Substrate-Embedded Springs

Authors
Kim, Hae YounKang, Dong-HyunLee, Byung ChulKhuri-Yakub, Butrus T.Kim, Jinsik
Issue Date
2020-09
Publisher
IEEE
Citation
IEEE International Ultrasonics Symposium (IEEE IUS)
Abstract
A capacitive micromachined ultrasonic transducer (CMUT) with substrate-embedded springs has been demonstrated high transmit efficiency with non-flexural parallel-plate piston movement. In this paper, we introduce whole wafer-scale uniform nanometer silicon posts with a fabrication technique of combination between DRIE and RIE. In order to maintain our fabrication cost-effective, a photomask with a minimum feature size of 2.0 mu m was used for whole wafer-scale photolithography, and a size-reduced RIE process followed by DRIE was conducted for achieving the sub-micron or nanometer post area. Furthermore, In-situ nanomechanical tests of the fabricated silicon posts were conducted using a pico-indenter (PI 85L Pico-Indenter, Bruker) monitored under a scanning electron microscopy. The length and the diameter of the silicon post after size-reduction by RIE are measured as 5.6 mu m and 0.74 mu m, respectively. The uniformity across the whole 4-inch wafer is less than 5%. The loading-unloading graph by In-situ nanomechanical experiments confirmed that the silicon posts could consistently achieve above 6% elastic strain. We are currently applying this nanometer springs to the CMUTs with substrate-embedded springs.
ISSN
1948-5719
URI
https://pubs.kist.re.kr/handle/201004/113593
Appears in Collections:
KIST Conference Paper > 2020
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE