Synthesis of Citronellol-Derived Antibacterial Polymers and Effect of Thioether, Sulfoxide, Sulfone, and Ether Functional Groups on Their Bactericidal Activity

Authors
Yook, JinsolJeong, DaunLee, Jong-Chan
Issue Date
2023-05
Publisher
American Chemical Society
Citation
Macromolecules, v.56, no.9, pp.3406 - 3420
Abstract
Citronellol-derived methacrylate polymers with four side chain interconnecting groups of different polarities (PCHMXs) are synthesized to prepare bio-based bactericidal polymers. The PCHM-X bactericidal activities are significantly affected by the different functional groups determining the interaction between the polymer chain and bacterial membrane that disrupts the membrane integrity causing cytoplasmic leakage, the main contributor to the polymer antibacterial properties. PCHM-SO, with a large dipole moment and strong hydrogen bonding ability, shows the best bactericidal activity among PCHM-Xs due to the strongest interactions with the bacterial membrane components. A sulfoxide-group-containing polymer with excellent bactericidal activity (99.99%) and the systematic study of the effect of different functional groups on the bactericidal activity are first reported herein.
Keywords
PLANT-BASED CARDANOL; QUATERNARY AMMONIUM; SIDE-CHAIN; MEMBRANE; COPOLYMERS; OXIDATION; ADHESION; PHOSPHATIDYLETHANOLAMINE; QUANTIFICATION; CIPROFLOXACIN
ISSN
0024-9297
URI
https://pubs.kist.re.kr/handle/201004/113762
DOI
10.1021/acs.macromol.2c02518
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE