Effects on the Thermo-Mechanical and Interfacial Performance of Newly Developed PI-Sized Carbon Fiber-Polyether Ether Ketone Composites: Experiments and Molecular Dynamics Simulations

Authors
Jung, Ha naBae, Kwak JinOh, YunaJin, Jeong-UnYou, Nam-HoYu, Jaesang
Issue Date
2023-04
Publisher
MDPI Open Access Publishing
Citation
Polymers, v.15, no.7
Abstract
In this study, polyether ether ketone (PEEK) composites reinforced with newly developed water-dispersible polyimide (PI)-sized carbon fibers (CFs) were developed to enhance the effects of the interfacial interaction between PI-sized CFs and a PEEK polymer on their thermo-mechanical properties. The PI sizing layers on these CFs may be induced to interact vigorously with the p-phenylene groups of PEEK polymer chains because of increased electron affinity. Therefore, these PI-sized CFs are effective for improving the interfacial adhesion of PEEK composites. PEEK composites were reinforced with C-CFs, de-CFs, and PI-sized CFs. The PI-sized CFs were prepared by spin-coating a water-dispersible PAS suspension onto the de-CFs, followed by heat treatment for imidization. The composites were cured using a compression molding machine at a constant temperature and pressure. Atomic force and scanning electron microscopy observations of the structures and morphologies of the carbon fiber surfaces verified the improvement of their thermo-mechanical properties. Molecular dynamics simulations were used to investigate the effects of PI sizing agents on the stronger interfacial interaction energy between the PI-sized CFs and the PEEK polymer. These results suggest that optimal amounts of PI sizing agents increased the interfacial properties between the CFs and the PEEK polymer.
Keywords
REINFORCED PEEK COMPOSITES; TRIBOLOGICAL PERFORMANCE; MECHANICAL-PROPERTIES; TEMPERATURE; STRENGTH; NANOPARTICLES; ROUGHNESS; ADHESION; carbon fiber; polyimide; sizing agent; interfacial adhesion; thermo-mechanical properties; molecular dynamics simulations
URI
https://pubs.kist.re.kr/handle/201004/113812
DOI
10.3390/polym15071646
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE