Full metadata record

DC Field Value Language
dc.contributor.authorKalantarifard, Shima-
dc.contributor.authorAkbari, Nader-
dc.contributor.authorAleshkevych, Pavlo-
dc.contributor.authorNandy, Subhajit-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorNajafpour, Mohammad Mahdi-
dc.date.accessioned2024-01-19T09:34:29Z-
dc.date.available2024-01-19T09:34:29Z-
dc.date.created2023-04-27-
dc.date.issued2023-04-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113826-
dc.description.abstractWater splitting for large-scale hydrogen production is a method for storing sustainable but intermittent energy sources. Oxygen evolution reaction (OER) through the water oxidation reaction provides low-cost electrons for the formation of hydrogen. OER is a complicated, sluggish reaction and a bottleneck for water splitting. Herein, first, a tetranuclear Ni complex with di(2-pyridyl) ketone (compound 1) has been synthesized. In the next step, OERs in the presence of compound 1 at pHs 3.0 and 7.0 have been investigated. The study attempts to answer the following questions for the metal complex during OER: (i) what is the true catalyst for OER in the presence of a Ni complex under neutral or acidic conditions? (ii) Why is low OER observed in the presence of a Ni complex under neutral or acidic conditions? The experiments show that the Ni-oxo cluster of gamma-NiO(OH) is formed during OER in the presence of compound 1 at pHs 3.0 and 7.0. In addition, compound 1 is reduced on the counter electrode surface at pH 3.0 during OER. The reduced complex is characterized by Raman spectroscopy and electron paramagnetic resonance as a Ni(I) complex, which is unstable and decomposed after a few hours. Thus, a metal complex must be stable on the working electrode surface and the counter electrode surface for OER in a single-cell setup.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleApplication of a Nickel Complex for Water Oxidation under Neutral and Acidic Conditions-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.3c00055-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Energy Materials, v.6, no.7, pp.3881 - 3893-
dc.citation.titleACS Applied Energy Materials-
dc.citation.volume6-
dc.citation.number7-
dc.citation.startPage3881-
dc.citation.endPage3893-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000962873200001-
dc.identifier.scopusid2-s2.0-85151387373-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusHYDROXIDE-
dc.subject.keywordPlusPH-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusDIAGRAMS-
dc.subject.keywordPlusREDOX-
dc.subject.keywordPlusOXO-
dc.subject.keywordAuthornickel complex-
dc.subject.keywordAuthoroxygen-evolution reaction-
dc.subject.keywordAuthorprecatalyst-
dc.subject.keywordAuthorwater oxidation-
dc.subject.keywordAuthorwater splitting-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE