Full metadata record

DC Field Value Language
dc.contributor.authorChae, Myeong Gil-
dc.contributor.authorKim, Jina-
dc.contributor.authorJang, Hee Won-
dc.contributor.authorPark, Bo Keun-
dc.contributor.authorChung, Taek-Mo-
dc.contributor.authorKim, Seong Keun-
dc.contributor.authorHan, Jeong Hwan-
dc.date.accessioned2024-01-19T09:34:36Z-
dc.date.available2024-01-19T09:34:36Z-
dc.date.created2023-04-20-
dc.date.issued2023-04-
dc.identifier.issn2637-6113-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/113832-
dc.description.abstractHigh-performance p-type thin-film transistors (TFTs) with high field-effect mobility and high on/off current ratios (Ion/Ioff) were fabricated by engineering the microstructure and surface morphology of the atomic layer-deposited (ALD) SnO channel layer. ALD SnO films grown at a deposition temperature of 225 degrees C showed excellent crystallinity and dense, smooth surfaces, which resulted in superior field-effect mobility of 6.13- 7.24 cm2/V center dot s without using a high-temperature postannealing process. Optimization of the SnO channel thickness suppressed the off-state leakage current, which consequently yielded excellent TFT switching performance, with an Ion/Ioff value of 104-105. Additionally, backchannel passivation by the ALD Al2O3 film improved the subthreshold swing characteristics by reducing surface defect states. These results suggest that synergistic control of the microstructure, surface morphology, and thickness of ALD SnO channels is crucial for achieving high-performance p-type SnO TFTs.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleHigh Field-Effect Mobility and On/Off Current Ratio of p-Type ALD SnO Thin-Film Transistor-
dc.typeArticle-
dc.identifier.doi10.1021/acsaelm.2c01107-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Electronic Materials, v.5, no.4, pp.1992 - 1999-
dc.citation.titleACS Applied Electronic Materials-
dc.citation.volume5-
dc.citation.number4-
dc.citation.startPage1992-
dc.citation.endPage1999-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000963728100001-
dc.identifier.scopusid2-s2.0-85147582396-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusATOMIC LAYER DEPOSITION-
dc.subject.keywordPlusBIAS STRESS STABILITY-
dc.subject.keywordPlusTIN MONOXIDE-
dc.subject.keywordPlusPHASE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthoratomic layer deposition-
dc.subject.keywordAuthorSnO-
dc.subject.keywordAuthormobility-
dc.subject.keywordAuthoron-
dc.subject.keywordAuthoroff current ratio-
dc.subject.keywordAuthorp-type thin-film transistor-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE