Investigation of reduced lithium titanate spinel as insertion host for rechargeable batteries
- Authors
- 정민지; 김민진; 나수빈; 한슬기; 조은미; 유승호; 임태은; 오시형
- Issue Date
- 2023-03
- Publisher
- 한국화학공학회
- Citation
- Korean Journal of Chemical Engineering, v.40, no.3, pp.512 - 518
- Abstract
- Rechargeable batteries based on reversible zinc electrodeposition in mildly acidic electrolytes have recentlygained popularity, primarily because of their cost-benefit and high theoretical energy density achievable. However,issues associated with dendrite growth and the corrosion of zinc metal anodes still remain major technical roadblocksthat must be overcome to ensure battery safety. Here we propose, for the first time, reduced lithium titanate (LTO) as aviable alternative anode that is capable of reversible ion intercalation at ~0.20 V vs. Zn/Zn2+. Reduced LTO was preparedvia simple thermochemical reduction at a mild temperature using sodium borohydride. This led to a significantreduction in the crystallite size and a drastic enhancement in the electrical conductivity, resulting in a distinct enhancementin the zinc insertion kinetics in the aqueous electrolytes, delivering a fair discharge capacity of 100mAh g?1.
Structural and morphological studies confirmed that reduced LTO served as a zero-strain host for ionic intercalation.
This study offers an interesting approach for developing novel intercalation hosts for rechargeable batteries based onabundant multivalent metal cations.
- Keywords
- ZINC-ION INTERCALATION; LI4TI5O12; ANODE; PERFORMANCE; SIZE; CHEMISTRY; ELECTRODE; KINETICS; Lithium Titanate; Intercalation Host; Thermochemical Reduction; Electrical Conductivity; Rechargeable Zinc Battery
- ISSN
- 0256-1115
- URI
- https://pubs.kist.re.kr/handle/201004/113941
- DOI
- 10.1007/s11814-022-1333-7
- Appears in Collections:
- KIST Article > 2023
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.