Full metadata record

DC Field Value Language
dc.contributor.authorYang, Dongseong-
dc.contributor.authorHwang, Kyoungtae-
dc.contributor.authorKim, Yeon-Ju-
dc.contributor.authorKim, Yunseul-
dc.contributor.authorMoon, Yina-
dc.contributor.authorHan, Nara-
dc.contributor.authorLee, Minwoo-
dc.contributor.authorLee, Seung-Hoon-
dc.contributor.authorKim, Dong-Yu-
dc.date.accessioned2024-01-19T10:30:46Z-
dc.date.available2024-01-19T10:30:46Z-
dc.date.created2023-02-03-
dc.date.issued2023-01-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114133-
dc.description.abstractSingle-walled carbon nanotube (SWNT) is desirable next generation semiconductor for flexible, transparent and even stretchable with exceptional electrical characteristics. Here, high-performance n-type semiconducting SWNT field-effect transistors (s-SWNT-FETs) are achieved by chemical doping using anion-pi interaction between SWNT and anion of tetrabutylammonium fluoride (TBAF) salt. The Fermi level (EF) of SWNT shifts to the con-duction band edge with increasing dopant concentration. The doped s-SWNT-FETs exhibit significant improve-ment in electron mobility (39.4 cm2V- 1s- 1) with high current on/off ratio (>104) compared to those of un-doped device. The doping using anion-pi interaction leads to populate electron density of channel and reduces both channel and contact resistance by 99.0% and 99.6%. Excess carriers introduced by the doping compensate traps by shifting the EF toward conduction band edge. The doped device showed improved current stability after 10 h of bias stress test, while the current of undoped FET decreased by 40.4%. Finally, flexible FETs with TBAF doped s-SWNT network are demonstrated on polyethylene naphthalate substrate and show stable operation after 2000 times bending test.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleHigh-performance carbon nanotube field-effect transistors with electron mobility of 39.4 cm2V-1s-1 using anion-pi interaction doping-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2022.12.025-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCarbon, v.203, pp.761 - 769-
dc.citation.titleCarbon-
dc.citation.volume203-
dc.citation.startPage761-
dc.citation.endPage769-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000915238200001-
dc.identifier.scopusid2-s2.0-85144074215-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHRESHOLD VOLTAGE SHIFTS-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusN-TYPE-
dc.subject.keywordPlusCONJUGATED POLYMERS-
dc.subject.keywordPlusNETWORK TRANSISTORS-
dc.subject.keywordPlusPURITY-
dc.subject.keywordPlusAMBIPOLAR-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusDISPERSION-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordAuthorSingle -walled carbon nanotubes-
dc.subject.keywordAuthorField-effect transistors-
dc.subject.keywordAuthorn -type doping-
dc.subject.keywordAuthorAnion-? interaction-
dc.subject.keywordAuthorFlexible devices-
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE