Hyperglycemic Neurovasculature-On-A-Chip to Study the Effect of SIRT1-Targeted Therapy for the Type 3 Diabetes "Alzheimer's Disease"

Authors
Jang, MinjeongChoi, NakwonKim, Hong Nam
Issue Date
2022-12
Publisher
Wiley-VCH Verlag
Citation
Advanced Science, v.9, no.34
Abstract
Diabetes mellitus (DM) is closely related to Alzheimer's disease (AD), but individual cellular changes and the possibilities of recovery through molecular level regulation have not been investigated. Here, a neurovasculature-on-a-chip (NV chip) model is presented in which the perfusable brain microvasculature is surrounded by the neurons. Under hyperglycemic conditions, the brain microvasculature shows disruption of barrier function and reduced expression of junctional markers. The neurons show Tau pathology and amyloid-beta (Ass) accumulation. Endothelial cells and neurons in the NV chip show sirtuin 1 (SIRT1) downregulation under hyperglycemic conditions, suggesting SIRT1 as a key regulator of hyperglycemia-induced AD. The recovery of glucose levels rescue SIRT1 expression, suggesting that this type of intervention may rescue the progression of hyperglycemia-mediated AD. Furthermore, the short hairpin RNA (shRNA)-, clustered regularly interspaced short palindromic repeats (CRISPR)-, and pharmaceutics-mediated regulation of SIRT1 regulate the pathophysiology of the brain endothelium and neurons at the functional and molecular levels.
Keywords
SIRT1; MODEL; NEURODEGENERATION; DYSFUNCTION; Alzheimer' s disease; diabetes; hyperglycemia; neurovasculature-on-a-chip
ISSN
2198-3844
URI
https://pubs.kist.re.kr/handle/201004/114267
DOI
10.1002/advs.202201882
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE