Semi-Supervised Learning for Low-Dose CT Image Restoration with Hierarchical Deep Generative Adversarial Network (HD-GAN)

Authors
Choi, KihwanVania, MalindaKim, Sungwon
Issue Date
2019
Publisher
IEEE
Citation
41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.2683 - 2686
Abstract
In the absence of duplicate high-dose CT data, it is challenging to restore high-quality images based on deep learning with only low-dose CT (LDCT) data. When different reconstruction algorithms and settings are adopted to prepare high-quality images, LDCT datasets for deep learning can be unpaired. To address this problem, we propose hierarchical deep generative adversarial networks (HD-GANs) for semi-supervised learning with the unpaired datasets. We first cluster each patient's CT images into multiple categories, and then collect the images in the same categories across different patients to build an imageset for denoising. Each imageset is fed into a generative adversarial network that consists of a denoising network and a following classification network. The denoising network efficiently reuses feature maps from the lower layers for end-to-end learning with full-size images. The classifier is trained to distinguish between the denoised images and the high-quality images. Evaluated with a clinical LDCT dataset, the proposed semi-supervised learning approach efficiently reduces the noise level of LDCT images without loss of information, thereby addressing the major shortcomings of IR such as computation time and anatomical inaccuracy.
ISSN
1557-170X
URI
https://pubs.kist.re.kr/handle/201004/114309
Appears in Collections:
KIST Conference Paper > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE