Full metadata record

DC Field Value Language
dc.contributor.authorSeo, Jae Eun-
dc.contributor.authorPark, Eunpyo-
dc.contributor.authorDas, Tanmoy-
dc.contributor.authorKwak, Joon Young-
dc.contributor.authorChang, Jiwon-
dc.date.accessioned2024-01-19T11:01:04Z-
dc.date.available2024-01-19T11:01:04Z-
dc.date.created2022-08-04-
dc.date.issued2022-11-
dc.identifier.issn2199-160X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114437-
dc.description.abstractIn this study, PdSe2 n- and p-metal-oxide semiconductor field-effect transistors (MOSFETs) are realized using the same conventional metal contact without any doping processes through utilizing the thickness-dependent phase transition in PdSe2. PdSe2 is semiconducting with a sizable band gap in a few layers while semimetallic in bulk. With the thin semiconducting PdSe2 for the channel and the conventional metal source/drain, an n-type behavior is achieved, whereas a p-type behavior with the thin PdSe2 channel and the thick semimetallic PdSe2 source/drain. To understand the carrier injection at the interface between the thin PdSe2 channel and the thick PdSe2 source/drain, a rigorous analysis of the band alignment and the temperature-dependent transfer characteristics is presented to extract the Schottky barrier height at the interface. Additionally, interconnecting PdSe2 n- and p-MOSFETs successfully demonstrate complementary metal-oxide semiconductor (CMOS) inverter with clear voltage transfer characteristics. The proposed approach to control the polarity of PdSe2 MOSFETs using the unique thickness-dependent phase transition in PdSe2 is promising for realizing the CMOS logic circuit with the same channel material and single contact metal.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleDemonstration of PdSe2 CMOS Using Same Metal Contact in PdSe2 n-/p-MOSFETs through Thickness-Dependent Phase Transition-
dc.typeArticle-
dc.identifier.doi10.1002/aelm.202200485-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED ELECTRONIC MATERIALS, v.8, no.11-
dc.citation.titleADVANCED ELECTRONIC MATERIALS-
dc.citation.volume8-
dc.citation.number11-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000827807000001-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTORS-
dc.subject.keywordPlusMONOLAYER MOS2-
dc.subject.keywordPlusDOPING-FREE-
dc.subject.keywordPlusWSE2-
dc.subject.keywordPlusJUNCTION-
dc.subject.keywordPlusINVERTERS-
dc.subject.keywordPlusDEVICE-
dc.subject.keywordAuthorcomplementary metal-oxide semiconductor (CMOS) inverter-
dc.subject.keywordAuthorPdSe-
dc.subject.keywordAuthor(2)-
dc.subject.keywordAuthorphase transition-
dc.subject.keywordAuthorpolarity control-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE