Exploiting elastic buckling of high-strength gold nanowire toward stable electrical probing

Authors
Seo, Jong-HyunKang, Sung-GyuCho, YigilPark, Harold S.Yoo, YoungdongKim, BongsooChoi, In-SukAhn, Jae-Pyoung
Issue Date
2022-10
Publisher
CELL PRESS
Citation
iScience, v.25, no.10
Abstract
Buckling is a loss of structural stability. It occurs in long slender structures or thin plate structures which is subjected to compressive forces. For the structural materials, such a sudden change in shape has been considered to be avoided. In this study, we utilize the Au nanowire's buckling instability for the electrical measurement. We confirmed that the high-strength single crystalline Au nanowire with an aspect ratio of 150 and 230-nm-diameter shows classical Euler buckling under constant compressive force without failure. The buckling instability enables stable contact between the Au nanowire and the substrate without any damage. Clearly, the in situ electrical measurement shows a transition of the contact resistance between the nanowire and the substrate from the Sharvin (ballistic limit) mode to the Holm (Ohmic) mode during deformation, enabling reliable electrical measurements. This study suggests Au nanowire probes exhibiting structural instability to ensure stable and precise electrical measurements at the nanoscale.
Keywords
THIN-FILM; DEFORMATION; CONTACTS; ENERGY; SIZE; AU; SUBSTRATE; SHARVIN
URI
https://pubs.kist.re.kr/handle/201004/114469
DOI
10.1016/j.isci.2022.105199
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE