Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, Jiho | - |
dc.contributor.author | Lee, Yejung | - |
dc.contributor.author | Chae, Yangki | - |
dc.contributor.author | Kim, Sung-Soo | - |
dc.contributor.author | Kim, Tae-Hwan | - |
dc.contributor.author | Lee, Sungho | - |
dc.date.accessioned | 2024-01-19T11:02:44Z | - |
dc.date.available | 2024-01-19T11:02:44Z | - |
dc.date.created | 2022-09-02 | - |
dc.date.issued | 2022-10 | - |
dc.identifier.issn | 0008-6223 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/114516 | - |
dc.description.abstract | Despite extensive studies on structural changes during the carbonization process of pitch-derived fibers, an ac-curate description of the transformation from liquid crystalline domains into carbon crystallites is still limited to a few depictions based on common analytical tools for carbon fibers. We employed small-angle X-ray scattering (SAXS) with model fits for the unification of such disparate measures. The carbonization process below 1200 ? is divided into three sequential regimes: Regime I -disruption of stacked polyaromatic mesogens with fluctuations in elasticity from 300 to 600 ?; Regime II -full-scale transformation with enhancement in orientation from 600 to 800 ?; and Regime III -development of semi-crystalline carbon structures with elongation of microvoids from 800 to 1200 ?. By examining the viscoelastic properties of pitch-derived fibers during heat treatment below 600 ? (Regime I), we found that the maximum softness of the pitch-derived fibers is achieved at 500 ?. This is due to the decrease in crosslink density between stacking structures, indicating that the crosslink density below 600 & DEG;C is a significant contributor to the formation of carbon crystallites. | - |
dc.language | English | - |
dc.publisher | Pergamon Press Ltd. | - |
dc.title | Unveiling the transformation of liquid crystalline domains into carbon crystallites during carbonization of mesophase pitch-derived fibers | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.carbon.2022.08.033 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Carbon, v.199, pp.288 - 299 | - |
dc.citation.title | Carbon | - |
dc.citation.volume | 199 | - |
dc.citation.startPage | 288 | - |
dc.citation.endPage | 299 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000843947900004 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | GRAPHITIZATION | - |
dc.subject.keywordPlus | POLYACRYLONITRILE | - |
dc.subject.keywordPlus | EVOLUTION | - |
dc.subject.keywordPlus | GRAPHITE | - |
dc.subject.keywordPlus | RAMAN | - |
dc.subject.keywordPlus | MICROSTRUCTURES | - |
dc.subject.keywordPlus | CONDUCTIVITY | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordPlus | PRECURSORS | - |
dc.subject.keywordPlus | MICROSCOPY | - |
dc.subject.keywordAuthor | Mesophase pitch | - |
dc.subject.keywordAuthor | Carbon fiber | - |
dc.subject.keywordAuthor | Microstructure | - |
dc.subject.keywordAuthor | SAXS | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.