Full metadata record

DC Field Value Language
dc.contributor.authorLee, Yong Min-
dc.contributor.authorJung, Byung Ku-
dc.contributor.authorAhn, Junhyuk-
dc.contributor.authorPark, Taesung-
dc.contributor.authorShin, Chanho-
dc.contributor.authorNg, Tse Nga-
dc.contributor.authorKim, In Soo-
dc.contributor.authorChoi, Ji-Hyuk-
dc.contributor.authorOh, Soong Ju-
dc.date.accessioned2024-01-19T11:03:05Z-
dc.date.available2024-01-19T11:03:05Z-
dc.date.created2022-07-21-
dc.date.issued2022-10-
dc.identifier.issn2199-160X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/114533-
dc.description.abstractAn effective surface-doping strategy for CdSe nanocrystals (NCs) by examining the size-dependency of the doping behavior is introduced. A CdSe NC thin-film transistor (TFT) is fabricated via a doping process with InCl3 treatment followed by an annealing process. Spectroscopic and electronic device characterization reveal that smaller NCs are more effectively doped than larger NCs at all annealing temperatures. This is attributed to the larger specific surface area, where the dopant can be more readily coordinated. The degenerate behavior of a 3.3 nm CdSe-NC TFT appears at a lower temperature than that of larger NC TFTs. High electron mobility and on-to-off current ratio of 1.79 cm(2) Vs(-1) and 5.2 x 10(5), respectively are achieved, in a low-temperature annealing process (150 degrees C) with 3.3 nm CdSe NCs. This facilitates the fabrication of a flexible CdSe-NC TFT, which is demonstrated on a polyethylene terephthalate substrate with an Al2O3 dielectric layer using atomic layer deposition. The flexible 3.3 nm CdSe-NC TFT is successfully fabricated even at 150 degrees C, with a high on-to-off current ratio and low hysteresis at a low operation voltage, which is impossible for larger CdSe-NC TFTs.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleDevelopment of Low-Temperature Doping Process in CdSe-Nanocrystal Thin Films for Flexible Electronic and Optoelectronic Devices-
dc.typeArticle-
dc.identifier.doi10.1002/aelm.202200297-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Electronic Materials, v.8, no.10-
dc.citation.titleAdvanced Electronic Materials-
dc.citation.volume8-
dc.citation.number10-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000824120900001-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOLLOIDAL NANOCRYSTALS-
dc.subject.keywordPlusTRANSISTORS-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusLIGANDS-
dc.subject.keywordAuthordoping-
dc.subject.keywordAuthornanocrystals-
dc.subject.keywordAuthorphotodetectors-
dc.subject.keywordAuthorsemiconductors-
dc.subject.keywordAuthortransistors-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE