PEDOT Composite with Ionic Liquid and Its Application to Deformable Electrochemical Transistors

Authors
Lee, SangkyuJang, JaepyoLee, SungjunJung, DaekwangShin, MikyungSon, Donghee
Issue Date
2022-09
Publisher
MDPI AG
Citation
Gels, v.8, no.9
Abstract
Organic electrochemical transistors (OECTs) have become popular due to their advantages of a lower operating voltage and higher transconductance compared with conventional silicon transistors. However, current OECT platform-based skin-inspired electronics applications are limited due to the lack of stretchability in poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Some meaningful structural design strategies to resolve this limitation, including rendering OECT to make it more stretchable, have been reported. However, these strategies require complicated fabrication processes and face challenges due to the low areal density of active devices because wavy interconnect parts account for a large area. Nevertheless, there have been only a few reports of fully deformable OECT having skin-like mechanical properties and deformability. In this study, we fabricated stretchable and conductivity-enhanced channel materials using a spray-coating method after a composite solution preparation by blending PEDOT:PSS with several ionic liquids. Among these, the PEDOT composite prepared using 1-butyl-3-methylimidazolium octyl sulfate exhibited a better maximum transconductance value (similar to 0.3 mS) than the other ion composites. When this material was used for our deformable OECT platform using stretchable Au nanomembrane electrodes on an elastomer substrate and an encapsulation layer, our d-ECT showed a barely degraded resistance value between the source and drain during 1000 cycles of a 30% repeated strain. We expect that our d-ECT device will serve as a step toward the development of more precise and accurate biomedical healthcare monitoring systems.
Keywords
SKIN ELECTRONICS; TRANSPARENT; LIGHTWEIGHT; BEHAVIOR; PEDOT:PSS; ionic liquid; organic electrochemical transistor; stretchable electronics; skin-inspired electronics
ISSN
2310-2861
URI
https://pubs.kist.re.kr/handle/201004/114577
DOI
10.3390/gels8090534
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE