Full metadata record

DC Field Value Language
dc.contributor.authorMara, Ikhsan M.-
dc.contributor.authorSaleem Abbas-
dc.contributor.authorXuan Huy Do-
dc.contributor.authorSeung-Young Choi-
dc.contributor.authorKobra Azizi-
dc.contributor.authorHans Aage Hjuler-
dc.contributor.authorJong Hyun Jang-
dc.contributor.authorHeung Yong Ha-
dc.contributor.authorDirk Henkensmeier-
dc.date.accessioned2024-01-19T12:03:41Z-
dc.date.available2024-01-19T12:03:41Z-
dc.date.created2022-02-17-
dc.date.issued2022-05-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115269-
dc.description.abstractPolybenzimidazole (PBI) has been considered as promising membrane material for all-vanadium redox flow batteries (VRFBs) due to its compact morphology that can hinder vanadium crossover. However, its 2?4 mS cm?1 proton conductivity remains a challenge to achieve high energy efficiency. Recently developed PBI membranes showed conductivity up to 18 mS cm?1 by pre-treatment with phosphoric acid (PA) and up to 56 mS cm?1 with KOH. However, since the operation of VRFB uses sulfuric acid (SA), pre-treatment with different chemicals generates chemical wastes. Here we investigate the effects of pre-treaments with SA at various concentrations and temperatures. The optimized membrane (25C_10M, pretreated at 25 °C in 10M SA) increases its thickness during the treatment from 10 to 17 ?m, and shows an improved conductivity in 2 M SA of 9.1 mS cm?1. In V4+ containing electrolyte, the area specific resistance was 262 mΩ cm2, which is 3.3 and 1.7 times better than for 10 ?m thick standard PBI (13 ?m thick in 2 M SA) and 54 ?m thick Nafion 212 membranes, respectively. The selectivity is 458x104 S min cm?3, 7, 30, and 29 times better than for PA, KOH pre-swelling, and Nafion 212 membranes, respectively. A VRFB performance test with a 17 ?m thick 25C_10M PBI membrane showed an energy efficiency of 89.6% at 80 mA cm?2. ? 2022 The Author(s)-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titlePolybenzimidazole membranes for vanadium redox flow batteries: Effect of sulfuric acid doping conditions-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2022.134902-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.435-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume435-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000773616800001-
dc.identifier.scopusid2-s2.0-85123843547-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROLYTE MEMBRANES-
dc.subject.keywordPlusPROTON CONDUCTIVITY-
dc.subject.keywordPlusEXCHANGE MEMBRANES-
dc.subject.keywordPlusSULFONATION DEGREE-
dc.subject.keywordPlusION-TRANSPORT-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusSELECTIVITY-
dc.subject.keywordPlusSCATTERING-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordAuthorinterchain spacing-
dc.subject.keywordAuthorPolybenzimidazole-
dc.subject.keywordAuthorPre-treatment-
dc.subject.keywordAuthorRedox flow battery-
dc.subject.keywordAuthorSulfuric acid-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE