Identification and functional validation of HLA-C as a potential gene involved in colorectal cancer in the Korean population

Authors
Lim, Eun BiOh, Ho-SukKim, Kang ChangKim, Moon-HoKim, Young JinKim, Bong JoNho, Chu WonCho, Yoon Shin
Issue Date
2022-04
Publisher
BMC
Citation
BMC GENOMICS, v.23, no.1
Abstract
Background Colorectal cancer (CRC) is the third most common cancer worldwide and is influenced by environmental and genetic factors. Although numerous genetic loci for CRC have been identified, the overall understanding of the genetic factors is yet to be elucidated. We sought to discover new genes involved in CRC applying genetic association analysis and functional study. Results We conducted exome array analysis on 194 CRC and 600 control subjects for discovering new candidate CRC genes. Fisher&apos;s exact test detected one exome-wide significant functional locus for CRC on SMCO1 (P < 10(-6)) and two suggestive functional loci on HLA-C and NUTM1 (10(-6) <= P < 10(-4)). To evaluate the biological role of three candidate CRC genes, the differential expression of these genes between CRC and non-cancer colorectal cells was analyzed using qRT-PCR and publicly available gene expression data. Of three genes, HLA-C consistently revealed the significant down-regulation in CRC cells. In addition, we detected a reduction in cell viability in the HLA-C overexpression CRC cell line, implying the functional relevance of HLA-C in CRC. To understand the underlying mechanism exerted by HLA-C in CRC development, we conducted RNA sequencing analyses of HLA-C overexpression CRC cells and non-cancer colorectal cells. Pathway analysis detected that significantly down-regulated genes in HLA-C overexpression CRC cells were highly enriched in cancer-related signaling pathways such as JAK/STAT, ErbB, and Hedgehog signaling pathways. Conclusions Exome array CRC case-control analysis followed by functional validation demonstrated that HLA-C likely exerts its influence on CRC development via cancer-related signaling pathways.
Keywords
GENOME-WIDE ASSOCIATION; SUSCEPTIBILITY LOCI; RNA-SEQ; CLASS-I; SCAN; METAANALYSIS; PROGNOSIS; BIOLOGY; TOOL; Colorectal cancer; Exome array association analysis; Functional validation; RNA sequencing
ISSN
1471-2164
URI
https://pubs.kist.re.kr/handle/201004/115462
DOI
10.1186/s12864-022-08509-5
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE