Full metadata record

DC Field Value Language
dc.contributor.authorJeong, Youngdo-
dc.contributor.authorJin, Soyeong-
dc.contributor.authorPalanikumar, L.-
dc.contributor.authorChoi, Huyeon-
dc.contributor.authorShin, Eunhye-
dc.contributor.authorGo, Eun Min-
dc.contributor.authorKeum, Changjoon-
dc.contributor.authorBang, Seunghwan-
dc.contributor.authorKim, Dongkap-
dc.contributor.authorLee, Seungho-
dc.contributor.authorKim, Minsoo-
dc.contributor.authorKim, Hojun-
dc.contributor.authorLee, Kwan Hyi-
dc.contributor.authorJana, Batakrishna-
dc.contributor.authorPark, Myoung-Hwan-
dc.contributor.authorKwak, Sang Kyu-
dc.contributor.authorKim, Chaekyu-
dc.contributor.authorRyu, Ja-Hyoung-
dc.date.accessioned2024-01-19T12:31:19Z-
dc.date.available2024-01-19T12:31:19Z-
dc.date.created2022-06-02-
dc.date.issued2022-03-
dc.identifier.issn0002-7863-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115520-
dc.description.abstractBiological nanomachines, including proteins and nucleic acids whose function is activated by conformational changes, are involved in every biological process, in which their dynamic and responsive behaviors are controlled by supramolecular recognition. The development of artificial nanomachines that mimic the biological functions for potential application as therapeutics is emerging; however, it is still limited to the lower hierarchical level of the molecular components. In this work, we report a synthetic machinery nanostructure in which actuatable molecular components are integrated into a hierarchical nanomaterial in response to external stimuli to regulate biological functions. Two nanometers core-sized gold nanoparticles are covered with ligand layers as actuatable components, whose folding/unfolding motional response to the cellular environment enables the direct penetration of the nanoparticles across the cellular membrane to disrupt intracellular organelles. Furthermore, the pH-responsive conformational movements of the molecular components can induce the apoptosis of cancer cells. This strategy based on the mechanical motion of molecular components on a hierarchical nanocluster would be useful to design biomimetic nanotoxins.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleStimuli-Responsive Adaptive Nanotoxin to Directly Penetrate the Cellular Membrane by Molecular Folding and Unfolding-
dc.typeArticle-
dc.identifier.doi10.1021/jacs.2c00084-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of the American Chemical Society, v.144, no.12, pp.5503 - 5516-
dc.citation.titleJournal of the American Chemical Society-
dc.citation.volume144-
dc.citation.number12-
dc.citation.startPage5503-
dc.citation.endPage5516-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000799109400038-
dc.identifier.scopusid2-s2.0-85126296502-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusGOLD NANOPARTICLES-
dc.subject.keywordPlusMACHINES-
dc.subject.keywordPlusCANCER-
dc.subject.keywordPlusDNA-
dc.subject.keywordPlusNANOMACHINES-
dc.subject.keywordPlusDELIVERY-
dc.subject.keywordPlusCHARGE-
dc.subject.keywordPlusCELLS-
dc.subject.keywordPlusPH-
dc.subject.keywordPlusEXPRESSION-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE