Investigation of molten carbonate electrolysis cells performance for H-2 production and CO2 capture

Authors
Audasso, EmilioKim, Kab InAccardo, GraziaKim, Han SungYoon, Sung Pil
Issue Date
2022-03
Publisher
Elsevier BV
Citation
Journal of Power Sources, v.523
Abstract
Molten carbonate electrolysis cells have recently gained interest for the sustainable production of H-2 or syngas to substitute fossil fuels. However, they can be also used for CO2 sequestration, as they pump it from one electrode inlet to the opposite electrode outlet. Thus, they can easily be applied to segregation of CO2 from H-2 based fuels while also increasing the fuel heat of combustion for example after a steam reforming reactor.& nbsp;To explore the use of molten carbonate electrolysis cell for this application, in this work the authors investigate the performance of the cell under different operating conditions in term of both operating temperature and fuel electrode gas composition. Polarization curves, gas crossover and electrochemical impedance spectroscopy are used to evaluate specific issues (high electrolyte losses due to water and temperature) or benefits (excess of H2O in regard to CO2 that allows for higher CO2 capture rate). After, a series of long-term tests at-150 mA cm(-2) and 650 & nbsp;C are performed to demonstrate long term stability. In particular, before electrolyte loss made the performance unstable, different cells are operated for about 1000 h with an average voltage of about 1.14 V demonstrating also the repeatability of such tests.
Keywords
NICKEL-ALUMINUM ALLOY; HYDROGEN-PRODUCTION; MCFC; MODEL; NANOPARTICLES; MECHANISM; KINETICS; CATHODE; SYSTEM; ANODE; Electrolysis cell; Concentration effect; Long-term test; <p>CO(2 )capture</p>
ISSN
0378-7753
URI
https://pubs.kist.re.kr/handle/201004/115532
DOI
10.1016/j.jpowsour.2022.231039
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE