Fast and complete recovery of TMDs-decorated rGO fiber gas sensors at room temperature

Authors
신동헌최용석박상윤여창수박용열송준성이승기김태욱배수강홍병희
Issue Date
2022-03
Publisher
North-Holland
Citation
Applied surface science, v.578
Abstract
Transition metal dichalcogenides (TMDs) possess great potential for use in gas sensing applications because, in contrast to conventional metal oxides, they have unique semiconducting properties with band gaps that can be tuned by adjusting thickness and composition. However, one issue is that their recovery time at room temperature is too long for them to be used practically in sustainable sensing applications. We found that incorporating Se atoms weaken interactions with gas molecules compared to when S atoms are used alone, therefore, the responsivity, as well as the recovery properties, of MoSxSe2-x sensors were significantly enhanced by increasing the ratio of Se to S. Herein, we demonstrate high-performance gas sensors that are based on reduced graphene oxide (rGO) fibers coated with MoSxSe2-x, the fabricated sensor could efficiently refresh its surface to allow fast, complete recovery at room temperature. Furthermore, it was shown that the porosity of rGO fibers with their large surface-to-volume ratio leads to enhanced sensing at room temperature.
Keywords
MOS2; NO2; OXIDE; SENSITIVITY; PERFORMANCE; NANOSHEETS; UV; rGO fiber; Gas sensor; TMDs alloy; Wearable sensor; Recovery time
ISSN
0169-4332
URI
https://pubs.kist.re.kr/handle/201004/115590
DOI
10.1016/j.apsusc.2021.151832
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE