Full metadata record

DC Field Value Language
dc.contributor.authorVishal Yeddu-
dc.contributor.authorGijun Seo-
dc.contributor.authorMatthew Bamidele-
dc.contributor.authorHyocheol Jung-
dc.contributor.author유형근-
dc.contributor.authorJae Woong Lee-
dc.contributor.authorJihoon Lee-
dc.contributor.authorDo Young Kim-
dc.date.accessioned2024-01-19T12:32:56Z-
dc.date.available2024-01-19T12:32:56Z-
dc.date.created2022-01-10-
dc.date.issued2022-03-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115611-
dc.description.abstractVisible and near-infrared broadband photodetectors with multispectral photosensitivity from 300 to 1100 nm were fabricated using the low-band-gap mixed Pb-Sn halide perovskites. A solution-processed nickel oxide (NiOx) thin film was used as the electron-blocking layer in the mixed Pb-Sn low-band-gap perovskite photodetector instead of the commonly used PEDOT:PSS because NiOx has a wider band gap and a shallow conduction band edge compared to PEDOT:PSS. There is no significant difference in the film qualities such as surface roughness, grain size, and crystallinity between polycrystalline perovskite films formed on PEDOT:PSS and NiOx. A NiOx electron blocker significantly reduces (more than 100 times) the dark currents of perovskite photodetectors without sacrificing the photocurrent extraction, resulting in a 10-fold increase in detectivity. Finally, mixed Pb-Sn halide perovskite photodetectors with NiOx as an electron blocker show the detectivity value higher than 1 x 10(12) Jones from 320 to 1020 nm and the maximum detectivity value of 5 x 10(12) Jones at the peak wavelength of 940 nm. This is comparable with the detectivity values of the commercially available silicon-based visible and near-infrared broadband photodetectors.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleHigh detectivity UV-visible-NIR broadband perovskite photodetector using Pb-Sn mixed narrow-gap absorber and NiOx electron blocker-
dc.typeArticle-
dc.identifier.doi10.1021/acsaelm.1c01264-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.22, no.3, pp.1206 - 1213-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume22-
dc.citation.number3-
dc.citation.startPage1206-
dc.citation.endPage1213-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000795896500035-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordAuthorinfrared photodetector-
dc.subject.keywordAuthorhigh detectivity-
dc.subject.keywordAuthorPb-Sn perovskite-
dc.subject.keywordAuthornarrow band gap-
dc.subject.keywordAuthorelectron-blocking layer-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE