Sulfurized Carbon Composite with Unprecedentedly High Tap Density for Sodium Storage

Authors
Jo, Chang-HeumYu, Jun HoKim, Hee JaeHwang, Jang-YeonKim, Ji-YoungJung, Hun-GiMyung, Seung-Taek
Issue Date
2022-02
Publisher
Wiley-VCH Verlag
Citation
Advanced Energy Materials, v.12, no.7
Abstract
A novel sulfurized carbon decorated by terephthalic acid (TPA) and polyacrylonitrile (PAN), with unprecedently high tap density (approximate to 1.02 g cm(-3)), is investigated. Room-temperature sodium-sulfur batteries offer high energy density; however, the dissolution of the polysulfide is a major factor hindering their commercialization. This dissolution problem can be tolerated by inhibiting the formation of polysulfide through binding sulfur to the carbon structure of PAN. Low sulfur content and low volumetric energy density in the composite are other drawbacks to be resolved. Heat-treated TPA induces a high-density carbonaceous material with high conductivity. This TPA is partly replaced by PAN, and the produced carbon and sulfur are composited with dehydrated polyacrylonitrile (CS-DPAN), which exhibits higher conductivity and surface area than the sulfurized dehydrated polyacrylonitrile (S-DPAN). The CS-DPAN composite electrode exhibits excellent electrochemical performance, and the resulting volumetric capacity is also superior to that of the S-DPAN material electrode. Operando Raman and operando X-ray diffraction analyses confirm that the increased capacity is realized via the avoidance of parasitic C60Na3 formation formed below 1 V, by adjusting the operation voltage range. This finding demonstrates the feasibility of carbon-sulfur composites as a high-energy electrode material for rechargeable sodium batteries.
Keywords
NA/S BATTERIES; TEMPERATURE; CATHODES; LIQUID; SYSTEM; CELLS; cathodes; composites; polyacrylonitrile; sodium-sulfur batteries; terephthalic acid
ISSN
1614-6832
URI
https://pubs.kist.re.kr/handle/201004/115688
DOI
10.1002/aenm.202102836
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE