Pyrrolic N wrapping strategy to maximize the number of single-atomic Fe-Nx sites for oxygen reduction reaction

Authors
Kang Gil SeongJang, Jue HyukSon, S.-Y.Lee, Youn kiLee, D.C.Yoo, Sung JongLee, Sung HoJoh, H.-I.
Issue Date
2022-02
Publisher
Elsevier BV
Citation
Journal of Power Sources, v.520
Abstract
Iron-nitrogen-carbon (Fe?N?C) catalysts with a representative single-atomic structure are promising platinum group metal-free catalysts for the oxygen reduction reaction (ORR) as they exhibit comparable activity to commercial catalysts. To enhance the ORR activity of Fe?N?C catalysts, the number of single Fe atoms coordinated N (Fe-Nx) should be maximized. In this study, a strategy is devised to increase the number of Fe-Nx sites using electrostatic interactions between electronegative pyrrolic-N and electropositive Fe ions. Pyrrolic N-rich carbon (pNC) is dispersed on the surface of the metal-organic framework (MOF) to form composite supports (pNC@MOF). Owing to the well-dispersed pNC and electrostatic interactions, the number of Fe-Nx sites on the pNC@MOF-derived hollow carbon framework (Fe/pNC@HCF) increases dramatically compared to that on the pristine MOF (Fe/HCF). The original shape of the Fe-absorbed MOF is maintained by the conversion of pNC into carbon layer within the framework by pyrolysis at 1000 °C even though pure Fe-absorbed MOF collapses. An anion exchange membrane fuel cell (AEMFC) with Fe/pNC@HCF is fabricated, and it shows a high current density of 437 mA cm?2 at 0.6 V and a power density of 343 mW cm?2. This performance suggests that the synthesized catalysts are excellent potential cathodic catalysts for AEMFCs. ? 2021 Elsevier B.V.
Keywords
METAL-ORGANIC FRAMEWORK; ACTIVE-SITES; C CATALYSTS; NONPRECIOUS ELECTROCATALYSTS; FE/N/C-CATALYSTS; FUEL-CELLS; IDENTIFICATION; DESIGN; MECHANISMS; DENSITY; Active site; Anion exchange membrane fuel cell; Iron dispersion; ORR electrocatalyst; Single-atomic Fe catalyst
ISSN
0378-7753
URI
https://pubs.kist.re.kr/handle/201004/115691
DOI
10.1016/j.jpowsour.2021.230904
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE