Thermo-selenized stainless steel as an efficient oxygen evolution electrode for water splitting and CO2 electrolysis in real water matrices

Authors
Han, Man HoKo, Young-JinLee, Seung YeonLim, ChulwanLee, Woong HeePin, Min WookKoh, Jai HyunKim, JihyunKim, WoongMin, Byoung KounOh, Hyung-Suk
Issue Date
2022-02
Publisher
ELSEVIER
Citation
JOURNAL OF POWER SOURCES, v.521
Abstract
Although stainless steel is a promising candidate for oxygen evolution reaction (OER) electrodes, chalcogenization is typically necessary to avoid surface passivation. Herein, we modify the surface of SUS304 by selenization under mild conditions. The optimal selenization temperature (500 degrees C) is determined by analyzing the surface morphology and elemental distribution. The electrode composition and the role of Se in improving OER activity are clarified using X-ray photoelectron spectroscopy depth profiling. The electrode selenized at 500 degrees C is rich in oxygen vacancies and had a high Ni content after electrochemical pre-activation. Moreover, the overpotential is only 284.3 mV at 10 mA cm(-2) and no potential degradation occurred over 160 h, indicating excellent stability under alkaline conditions. Further, high stability is achieved during CO2 reduction in a real water matrix. These results provide new insights for modifying commercial stainless-steel electrodes to maximize OER activity for alkaline water splitting and neutral CO2 electrolysis.
Keywords
SURFACE OXIDATION; ELECTROCATALYSTS; REDUCTION; CATALYSTS; MN; NI; (OXY)HYDROXIDE; NANOSHEETS; HYDROXIDE; OXIDES; Stainless steel; Selenization; Oxygen evolution reaction (OER); Water splitting; CO2 electrolysis
ISSN
0378-7753
URI
https://pubs.kist.re.kr/handle/201004/115779
DOI
10.1016/j.jpowsour.2021.230953
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE