Efficient upcycling of polypropylene-based waste disposable masks into hard carbons for anodes in sodium ion batteries

Authors
Lee, GwanwonLee, Min EuiKim, Sung-SooJoh, Han-IkLee, Sungho
Issue Date
2022-01
Publisher
한국공업화학회
Citation
Journal of Industrial and Engineering Chemistry, v.105, pp.268 - 277
Abstract
We demonstrate the conversion of disposable polypropylene (PP) masks into non-graphitizable carbon powders that can be applied as anode materials in sodium ion batteries. Sulfuric acid treatment and subsequent pyrolysis of the masks resulted in polyaromatic and carbon structures, respectively. Fourier transform infrared, Raman, and X-ray photoelectron spectroscopies revealed that a longer sulfuric acid treatment time results in a higher carbon yield (up to 50%), indicating that the infusible structures generated during sulfonation played a critical role in the development of the resulting carbon. In addition, we confirmed the detailed mechanism by NMR analysis, which indicated that sulfonation induced not only simple cross-linking but also polyaromatic hydrocarbons, contributing to distinct D and G bands in the Raman spectra. However, even heat-treatment at a high temperature of 2400 degrees C could not facilitate a graphitic structure, implying that PP is intrinsically non-graphitizable. Finally, we used mask-derived carbon as an anode material of sodium ion batteries. The prepared hard carbon anode showed a high reversible capacity of-340 mA h/g at a current rate of 0.01 A/g, and-53% of the capacity was maintained at 100 times higher current rate, suggesting the superior rate capability. In addition, the assembled full cell achieved a reversible capacity of-110 mA h/g with a high energy density of-352 Wh/kg, validating the feasibility of its application as an anode material of sodium ion batteries. The solid-to-solid conversion of PP-based masks to carbons could contribute to the upcycling technology as one of the potentially affordable waste plastic management techniques. (c) 2021 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
Keywords
MECHANICAL-PROPERTIES; POLYETHYLENE FILMS; RAMAN-SPECTROSCOPY; SULFONATION; GRAPHENE; FIBERS; NANOTUBES; EVOLUTION; REUSE; CARBONIZATION; Waste disposable mask; Polypropylene; Sulfonation; Hard carbon; Sodium ion battery
ISSN
1226-086X
URI
https://pubs.kist.re.kr/handle/201004/115853
DOI
10.1016/j.jiec.2021.09.026
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE