Full metadata record

DC Field Value Language
dc.contributor.authorHeekyung Koh-
dc.contributor.authorTaeYoung Park-
dc.contributor.authorYong An Chung-
dc.contributor.authorJong-Hwan Lee-
dc.contributor.authorKIM HYUNG MIN-
dc.date.accessioned2024-01-19T13:02:26Z-
dc.date.available2024-01-19T13:02:26Z-
dc.date.created2022-01-10-
dc.date.issued2022-01-
dc.identifier.issn2168-2194-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115896-
dc.description.abstractTranscranial focused ultrasound (tFUS) is a promising non-invasive technique for treating neurological and psychiatric disorders. One of the challenges for tFUS is the disruption of wave propagation through the skull. Consequently, despite the risks associated with exposure to ionizing radiation, computed tomography (CT) is required to estimate the acoustic transmission through the skull. This study aims to generate synthetic CT (sCT) from T1-weighted magnetic resonance imaging (MRI) and investigate its applicability to tFUS acoustic simulation. We trained a 3D conditional generative adversarial network (3D-cGAN) with 15 subjects. We then assessed image quality with 15 test subjects: mean absolute error (MAE) = 85.72 +/- 9.50 HU (head) and 280.25 +/- 24.02 HU (skull), dice coefficient similarity (DSC) = 0.88 +/- 0.02 (skull). In terms of skull density ratio (SDR) and skull thickness (ST), no significant difference was found between sCT and real CT (rCT). When the acoustic simulation results of rCT and sCT were compared, the intracranial peak acoustic pressure ratio was found to be less than 4%, and the distance between focal points less than 1 mm.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleAcoustic Simulation for Transcranial Focused Ultrasound Using GAN-Based Synthetic CT-
dc.typeArticle-
dc.identifier.doi10.1109/JBHI.2021.3103387-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Journal of Biomedical and Health Informatics, v.26, no.1, pp.161 - 171-
dc.citation.titleIEEE Journal of Biomedical and Health Informatics-
dc.citation.volume26-
dc.citation.number1-
dc.citation.startPage161-
dc.citation.endPage171-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000745829300020-
dc.identifier.scopusid2-s2.0-85123516253-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMathematical & Computational Biology-
dc.relation.journalWebOfScienceCategoryMedical Informatics-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaMathematical & Computational Biology-
dc.relation.journalResearchAreaMedical Informatics-
dc.subject.keywordPlusCOMPUTED-TOMOGRAPHY-
dc.subject.keywordPlusPSEUDO-CT-
dc.subject.keywordPlusFEASIBILITY-
dc.subject.keywordPlusATTENUATION-
dc.subject.keywordPlusNETWORK-
dc.subject.keywordPlusHEAD-
dc.subject.keywordAuthorsingle-element transducer-
dc.subject.keywordAuthorsynthetic CT-
dc.subject.keywordAuthorMRI only-
dc.subject.keywordAuthorgenerative adversarial network-
dc.subject.keywordAuthorconditional GAN-
dc.subject.keywordAuthortranscranial focused ultrasound-
dc.subject.keywordAuthoracoustic simulation-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE