Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Matkivskyi, V. | - |
dc.contributor.author | Lee, Y. | - |
dc.contributor.author | Seo, H.S. | - |
dc.contributor.author | Lee, D.-K. | - |
dc.contributor.author | Park, J.-K. | - |
dc.contributor.author | Kim, I. | - |
dc.date.accessioned | 2024-01-19T13:04:14Z | - |
dc.date.available | 2024-01-19T13:04:14Z | - |
dc.date.created | 2022-01-10 | - |
dc.date.issued | 2021-12 | - |
dc.identifier.issn | 1567-1739 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/116002 | - |
dc.description.abstract | This work is dedicated to the study of electronic-beam (e-beam) evaporated titanium oxide (TiOx) contact for polycrystalline silicon hetero-junction solar cells. A TiOx material obtained by e-beam evaporation method is suggested as a possible alternative to the atomic layer deposition (ALD) process. The purpose is to achieve corresponding passivation efficiency between e-beam evaporation of TiOx and the ALD method. However, the TiOx in question achieved a relatively low passivation performance of Seff = 113 cm?1 in comparison to the reported ALD results. Nonetheless, as e-beam evaporation is well-established and an environmentally friendly deposition technology, e-beam evaporated TiOx passivation layer has potential for improvement. What is clearly demonstrated in our work is how such an improvement in contact resistance dropped from >55 Ω/cm2 to 2.29 Ω/cm2. Indeed, our study established a correlation between the main process parameters of e-beam evaporation and their influence on the quality of electron selective TiOx layer. Moreover, we reveal a possible scenario for the implementation of e-beam evaporated Titanium oxide as electron selective contact for asymmetrical hetero-junction solar cells. ? 2021 The Authors | - |
dc.language | English | - |
dc.publisher | Elsevier | - |
dc.title | Electronic-beam evaporation processed titanium oxide as an electron selective contact for silicon solar cells | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.cap.2021.10.005 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Current Applied Physics, v.32, pp.98 - 105 | - |
dc.citation.title | Current Applied Physics | - |
dc.citation.volume | 32 | - |
dc.citation.startPage | 98 | - |
dc.citation.endPage | 105 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.identifier.kciid | ART002788721 | - |
dc.identifier.wosid | 000744240800003 | - |
dc.identifier.scopusid | 2-s2.0-85118253536 | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | Atomic layer deposition | - |
dc.subject.keywordPlus | Evaporation | - |
dc.subject.keywordPlus | Silicon solar cells | - |
dc.subject.keywordPlus | Titanium dioxide | - |
dc.subject.keywordPlus | Atomic-layer deposition | - |
dc.subject.keywordPlus | Beam evaporation | - |
dc.subject.keywordPlus | Carrier selective contact | - |
dc.subject.keywordPlus | Deposition methods | - |
dc.subject.keywordPlus | Deposition process | - |
dc.subject.keywordPlus | Electronic beams | - |
dc.subject.keywordPlus | Evaporation method | - |
dc.subject.keywordPlus | Oxide materials | - |
dc.subject.keywordPlus | Selective contacts | - |
dc.subject.keywordPlus | Titania oxides | - |
dc.subject.keywordPlus | Passivation | - |
dc.subject.keywordAuthor | Carrier selective contacts | - |
dc.subject.keywordAuthor | e-beam | - |
dc.subject.keywordAuthor | Passivation | - |
dc.subject.keywordAuthor | Solar cells | - |
dc.subject.keywordAuthor | TiO2 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.